
FACULTY OF COMPUTING AND TELECOMMUNICATION

Institute of Computing Science

Bachelor’s thesis

QUALITY ASSESSMENT OF 3D RNA STRUCTURES USING

GRAPH NEURAL NETWORKS

Bartosz Adamczyk, 148163

Maciej Biliński, 148221

Mikołaj Bartkowiak, 148164

Szymon Stanisławski, 150192

Supervisor

dr hab. inż. Maciej Antczak, prof. PP

POZNAŃ 2024



Contents

1 Introduction 1

1.1 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Work distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preparation of a diverse training set 8

2.1 Generating representative dataset of 3D RNA structures . . . . . . . . . . . . . . . 8

2.2 Detailed analysis of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Training dataset splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Data distribution in subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 3D RNA structure descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Processing pipeline for extracting descriptors . . . . . . . . . . . . . . . . . 17

2.6 Missing data handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Selected features to describe 3D RNA structures 20

3.1 Node features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Edge features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Preprocessing pipeline for extracting structural features . . . . . . . . . . . . . . . 22

3.4 Final form of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Assessing the set of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Graph Neural Network-based model architecture 25

4.1 Graph Neural Network Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Architecture design and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Learning process description 30

5.1 Common stages of the learning process . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Preliminary approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Training on large dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Transfer Learning application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Optimization of hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Evaluation of the developed models 37

7 Analysis of the obtained results 45

7.1 Test datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Performance of the developed architecture . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Based on the representative 3D RNA descriptors dataset . . . . . . . . . . . 47

I



II

7.3 Performance of ARES’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4 ARES model characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Summary of the developed models comparative analysis . . . . . . . . . . . . . . . 56

7.5.1 Ranking analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Technological solutions applied 58

8.1 Business logic layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1.1 Architecture of the application . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1.2 Containerization of the application . . . . . . . . . . . . . . . . . . . . . . . 58

8.1.3 Application programming interface (API) . . . . . . . . . . . . . . . . . . . 59

8.2 User interface layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.3 Computational infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 User interface 62

9.1 Web application presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2 Command line interface description . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10 Summary 67

10.1 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69



Chapter 1

Introduction

RNA, or ribonucleic acid, is a vital biomolecule essential for various cellular processes, e.g., gene

regulation or protein synthesis [1]. Composed using nitrogenous bases (i.e., adenine, guanine,

cytosine, and uracil), RNA’s primary structure is a linear sequence of these nucleotides. How-

ever, the true complexity and functionality of RNA emerge from its spatial conformation. The

three-dimensional structure of RNA molecules is pivotal in dictating their specific functions, as it

determines how they interact with other biomolecules [2, 3].

The RNA-Puzzles competition is a collective blind experiment that aims to address the chal-

lenging task of accurately predicting three-dimensional RNA structures. RNA-Puzzles provides a

structured framework for participants to evaluate the strengths and weaknesses of existing compu-

tational approaches for predicting three-dimensional RNA structures and examining advancements

and identifying any obstacles impending progress in the field [4, 5].

On the other hand, the CASP-RNA competition, an integral component of the Critical As-

sessment of Structure Prediction initiative aims to evaluate the state-of-the-art in protein and

RNA structure prediction. CASP-RNA focuses on assessing the accuracy of computational meth-

ods in predicting the three-dimensional structures of RNA molecules by providing a standardized

platform for the evaluation of diverse prediction methods [6].

The hierarchical notation of RNA structures captures the multi-level organization of RNA mol-

ecules, encompassing various levels of structural complexity from the primary sequence to higher-

order structures. The primary structure represents the linear sequence of nucleotides, denoted by

the specific arrangement of adenine (A), guanine (G), cytosine (C), and uracil (U) nitrogenous

bases. Moving to the secondary structure, interactions such as base pairing lead to the formation

of structures: helices, bulges, loops, and junctions of various kind. Secondary structure is often

represented using diagrams, where base pairs are depicted using connected lines. Tertiary struc-

ture involves the atom locations in three-dimensional space. Quaternary structure refers to the

interactions between multiple RNA molecules or other biological compounds.

The 3D structures of RNA are experimentally determined using a number of techniques, e.g., X-

ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or cryogenic electron mi-

croscopy (cryoEM) [2]. Unfortunately, experimental methods are often expensive, difficult to

apply, and not always effective due to the structural specificity, flexibility or dynamics of 3D RNA

structures. Therefore, the results of computational methods often support experimenters to refine

experimental assumptions or reduce the time needed to obtain satisfactory results. There are

many methods for 3D RNA structure prediction currently available, but how to select the one that

usually returns reliable results?

The assessment of the quality of three-dimensional RNA structures represents a complex chal-

1



Introduction 2

lenge within the realm of structural bioinformatics, and despite numerous existing solutions, a

universally reliable method for accurately recognizing native three-dimensional RNA structures

remains elusive. The inherently dynamic nature of RNA molecules, coupled with the diverse range

of conformations they can adopt, poses a significant obstacle for accurate quality assessment.

One of the fundamental metrics employed in the quality assessment of 3D RNA structures is

the root-mean-square deviation (RMSD) of atomic positions [7]. RMSD provides a measure of

structural similarity, quantifying the spatial displacement between corresponding atoms in pre-

dicted and reference structure. In the context of 3D RNA structures, RMSD serves as a crucial

tool for evaluating the accuracy of computational predictions or experimental methods. Lower

RMSD score indicates a higher degree of agreement between the predicted and reference structure.

Machine learning methods have already proven their effectiveness in many applications. Al-

phaFold [8] is a deep learning system used for 3D structure prediction of proteins. Its accuracy and

performance is equivalent or even outperforms other methods. In the CASP14 protein structure

prediction competition [9], AlphaFold managed to beat the competition in the category involving

new molecules (so called new-folds).

The most popular and best-performing deep learning-based methods encompass a diverse range

of architectures. Convolutional neural networks (CNN) excelling in tasks such as image classifi-

cation, object detection and facial recognition [10] have already been used for quality assessment

of 3D RNA structures [11]. Transformer architectures, exemplified by models like GPT [12], have

achieved remarkable success in a wide array of natural language processing tasks, leveraging self-

attention mechanisms for contextual understanding. Generative adversarial networks (GANs) have

emerged as powerful tools for image synthesis [13], while reinforcement learning techniques excel

in autonomous decision-making scenarios, such as game playing [14].

Graph convolutional networks (GCNs) are a class of neural networks designed for processing

and analyzing graph-structured data [15]. Graphs consist of nodes and edges, where nodes repre-

sent entities and edges capture relationships between these entities. GCNs leverage this inherent

structure to perform node-level or graph-level tasks.

In conventional neural networks, individual layers process the entire input in isolation. In

contrast, graph convolutional networks (GCNs) take into account features of both a node and its

adjacent neighbors, enabling the model to capture the relational information inherent in the graph

structure. This is accomplished through graph convolution operations that aggregate information

from adjacent neighboring nodes, leading to the updating of features of each node in a manner

that considers its connectivity within the graph.

Graph attention networks (GATs) [16] are a type of graph neural network architectures which

assign varying attention coefficients to different nodes during the aggregation phase, where infor-

mation is collected from adjacent neighboring nodes. The attention coefficients are determined

using a function called the attention function.

This allows GATs to assign importance to neighboring nodes throughout aggregation phase.

The input to a single graph attentional layer is a set of node features, h = {h⃗1, h⃗2, . . . , h⃗N}, where
the number of nodes is given by N , and h⃗i ∈ RF , where F represents the number of features

in each node. The layer produces an output h′ = {h⃗′
1, h⃗

′
2, . . . , h⃗

′
N}, h⃗′

i ∈ RF ′
. A shared linear

transformation, defined by weight matrix W is applied uniformly to all nodes to elevate input

features to a higher-level. Following this, a self-attention mechanism is used on all nodes, with the

following attention coefficients

eij = a(Wh⃗i,Wh⃗j)



Introduction 3

indicating the importance of node j’s features to node i. The attention mechanism, denoted by

a is a single-layer feed-forward neural network characterized by a weight vector ã which employs

LeakyReLU non-linearity. When expanded, the coefficients calculated by the attention mechanism

can be expressed as follows:

αij = softmaxj(eij) =
exp

(
LeakyReLU

(
ãT [Wh⃗i ∥ Wh⃗j ]

))
∑

k∈Ni
exp

(
LeakyReLU

(
ãT [Wh⃗i ∥ Wh⃗k]

))
where T represents transposition, ∥ represents concatenation, and Ni represents the neighbor-

hood of node i in the graph. After calculating the normalized attention coefficients, they are used

to calculate a linear combination of the corresponding features, serving as output features for each

node, with the possibility of applying some non-linearity, σ:

h⃗′
i = σ

∑
j∈Ni

αijWh⃗j


Three-dimensional RNA structures can be represented as a graph, prompting the exploration

of graph-based machine learning methods, particularly GCNs and GATs, to address the challenges

associated with analyzing such complex structures. Given the inherent graph-like nature of three-

dimensional RNA structures, the application of graph neural networks holds promise for delivering

satisfactory results to the problem at hand.

One such application is the Atomic Rotationally Equivariant Scorer (ARES) [17]. It is a

deep learning system using graph neural networks for quality assessment of 3D RNA structures.

Trained on 18 small RNA molecules, ARES consistently surpasses both human performance and

other techniques, yielding the best results. Thus, we decided to compare our developed models

against ARES during evaluation process.

In the context of describing 3D RNA structures, various features and properties are essential

for comprehensive analysis. Parameters such as distances in both sequence and three-dimensional

space, torsion angles and secondary structure information are among the crucial features that

precisely characterize three-dimensional RNA structures.

One crucial aspect of developing machine learning models involves the need for appropriate

data. The data must be diverse and reliable to ensure optimal model performance. In the case

of RNAQuANet, the model specifically requires data on 3D RNA structures. However, acquiring

such RNA structures is a non-trivial task.

The Protein Data Bank [19] is the primary source of experimentally determined structure data,

but it offers a limited number of standalone RNA structures. Additionally, certain segments of

RNA may be intertwined with DNA structures or contain extraneous elements such as ligands or

other biological compounds. Consequently, the evolutionary progress of RNA-based solutions is

slower compared to DNA.

Before incorporating these structures into the learning process, it is imperative to clean them.

While cleaning can be performed in-house, it is a time-consuming process. Fortunately, there are

dedicated repositories that provide pre-cleaned RNA structures. The RNAQuANet dataset, for

instance, is derived from the RNAsolo database [20], which stores RNA cleaned 3D structures

obtained through various experimental methods. The structures in that repository are organized

into equivalence classes to supply non-redundant sets for learning purposes [21].

In the context of assessment of three-dimensional RNA structures, one approach involves per-

forming local analysis. This paradigm is rooted in the assumption that the immediate neighbor-

hood of the nucleotide and its structural properties are correlated. Considering this approach is



Introduction 4

Figure 1.1: The example 3D RNA structure (E. coli cysteinyl-tRNA and T. aquaticus elongation factor EF-
TU:GTP ternary complex) visualised in Mol* [18].

Figure 1.2: 3D structure of 16S RIBOSOMAL RNA visualized in Mol* (PDB ID: 1G1X, with atoms located in
the immediate neighborhood of the third nucleotide).



1.1. Scope of the work 5

useful in the case when conventional dataset containing 3D RNA structures might be too insignif-

icant for deep learning purposes.

Local analysis in the context of RNA structures involves studying specific regions or segments

rather than considering entire structure as a whole. These specific substructures are called 3D RNA

local descriptors [22]. In our framework, structural descriptors describe nucleotide neighborhood

in pre-determined distance of 16 Å within our dataset. Thanks to this approach deep learning

techniques can focus on essential features of RNA tertiary structure.

Another approach to consider if conventional learning process might yield unsatisfactory results

is the use of transfer learning techniques. Transfer learning [23] is a machine learning paradigm

that involves utilizing knowledge acquired from solving one task and applying it to a different but

related task. Instead of training a model from scratch for a specific task, transfer learning begins

with a pre-trained model on a source task and fine-tunes it for the target task. This approach is

particularly effective when the source and target tasks share common patterns or features, allowing

the model to capitalize on the learned representations.

Transfer learning is especially useful when the target task lacks sufficient labeled data, as

the pre-trained model can bring valuable knowledge from a data-rich source task. The method

is commonly applied in diverse domains, including natural language processing, computer vision

and speech recognition, where large pre-trained models have shown significant improvements in

performance and efficiency when adapted to specific applications.

1.1 Scope of the work

The scope of the thesis encompasses design, training, evaluation, and implementation of graph

neural network models with the primary goal of efficient and reliable quality assessment of spatial

3D RNA structures, as well as construction of a representative, diverse, and non-redundant training

set including three-dimensional RNA structures.

The crucial problem relies on an adequate representation of three-dimensional RNA structures

effective for training deep neural networks and applying different graph neural network-based

models to reliably assess the quality of structures considered. Furthermore, we aim to develop a

fully-automated pipeline that can process any 3D RNA structure and evaluate its quality using

proposed models. We also analyze the architecture and the significance of its components and

perform hyperparameter optimization for promising models. Finally, an user-friendly user interface

will be developed to allow users to assess quality of their 3D RNA structures with models we aim

to provide.

1.2 Structure of the work

The diploma thesis consists of 10 chapters.

Chapter 1 focuses on stating the problem and describing the importance of assessing the quality

of three-dimensional RNA structures. We describe some advancements made using deep learning

techniques and how graph neural networks can be effectively applied for analysis of 3D RNA struc-

tures.

Chapter 2 presents the methods used to prepare a representative, diverse, and non-redundant

training dataset. It contains information about how we performed prediction and extraction of

RNA structure properties. It also describes the tools we used and presents measurable statistics

describing the training data.



1.3. Work distribution 6

Chapter 3 focuses on extracting meaningful features from the input dataset and how they are

represented onto a graph-based structure to be applied in the learning process. It lists all the node-

and edge-based properties used by our graph representation of three-dimensional RNA structures

and how each property is transformed and represented in graph neural networks.

Chapter 4 describes the graph neural network architectures we experimented with. It explains

the representation of the graph in PyTorch Geometric [24] and how node features in a graph

neural network are updated during the training process. Additionally, it provides an insight to

architectures we used.

Chapter 5 presents differing approaches we used concerning the learning process. It describes

the contents of each file representing a distinct dataset (train, validation, and test subset), as

well as different training processes on small and large datasets independently and when a transfer

learning approach was finally applied.

Chapter 6 describes the methods and metrics used during evaluation of our models. It goes in

depth into what is the accuracy of the models trained on different variations of the input datasets,

additionally considering descriptors’ dataset of variable segment length.

Chapter 7 contains in-detail analysis of the results obtained. Effective assessment of the model’s

performance is an essential step. Using comparative analysis, we compared different approaches

we have used, especially evaluating differences in accuracy and performance with ARES, another

model focused on quality assessment of three-dimensional RNA structures.

Chapter 8 describes our work in the context of technological decisions and tools we used. It

focuses both on how we conducted work on our model, using Python command line interface

scripts and PyTorch Geometric, during implementation of graph neural networks. Moreover, it

also describes the technology we used during the development of the web application we provided

as a way to evaluate 3D RNA structures using our model.

Chapter 9 presents the web application and its user interface. The demo interface allows one to

upload their own files with 3D RNA structures. The chapter focuses on presenting the application

and contents of the results page. It also provides an introduction to the command line interface.

Chapter 10 contains the summary of our work performed within the thesis, as well as an URL

pointing to a GitHub repository where all the learning scripts and the models developed were

published.

1.3 Work distribution

The successful completion of the project was a collaborative effort involving contributions of four

team members, each specializing in distinct aspects. Additionally, the team collaborated closely

on significant tasks that required joint efforts. The work distribution is summarized as follows:

• Bartosz Adamczyk:

– Development and supervision of the workflow for creating training datasets and its

parallelization.

– Creation of ARES Docker Image crucial for the evaluation.

– In-detailed analysis of training datasets.

– Preparation and parallelization of feature extraction pipeline.

– Evaluation and benchmarking the ARES model.



1.3. Work distribution 7

• Maciej Biliński:

– Project management: repository configuration, tasks assignment, code review.

– Preparation of the development environment: creating a Docker image, developing the

project architecture, introducing a configuration file, and “How to Use” documentation.

– Implementation of parameterizable graph neural network architecture as well as effi-

cient loading mechanisms, including stream feature.

– Experimenting with neural network parameters and training several models on different

datasets.

– Evaluation and comparison among the models developed in terms of their accuracy.

• Mikołaj Bartkowiak:

– Managing command line interface scripts, implementation of argument parsing frame-

work in early stages.

– Contribution to the preprocessing and creation of the pipeline, mostly by optimizing

developed scripts to ensure efficiency.

– Keeping the codebase clean by formatting and restructuring the code, adding type

annotations and comments.

– Working on the early stages of containerizing the application.

– Involvement in analysis of the datasets developed within the thesis.

• Szymon Stanisławski:

– Development of the web user interface for the project.

– Development of the API (Application Programming Interface) connecting the web in-

terface with the processing layer.

– Implementation of a database to store and manage user tasks’ data within the API.

– Integration of a job queue system to enhance the efficiency of asynchronous tasks within

the API.

– Efficiency optimization of the whole application’s processing.



Chapter 2

Preparation of a diverse training set

Establishing a representative, diverse, and non-redundant dataset is a crucial component for the

future success of a model. The diversity can be achieved in at least two possible ways:

• by using significant amount of existing experimentally determined 3D RNA structures and
their in silico predictions allowing us to compute the RMSD between them,

• by molecular dynamics simulations performed on existing experimentally determined 3D RNA
structures.

The dataset used in the Atomic Rotationally Equivariant Scorer (ARES) [17] is the sole dataset

that fulfills the criteria, but it was imperative to create an artificial set. Consequently, the

RNAQuANet dataset is established from a non-redundant collection of 3D RNA structures [21].

This approach helps mitigate the risk of model overfitting.

From the set of non-redundant RNA structure representatives downloaded from the RNA-

solo [20], structures were processed in a specific way to achieve diversity:

• 3D RNA structure resolution has to be less than or equal to 3 Å to ensure high-quality,

• at least two nucleotides have to form base pairing,

• at least one nucleotide has to be unpaired,

• amount of paired nucleotides in the structure has to be greater or equal than the amount of
unpaired nucleotides,

• filter out structures of size less than 10 or greater than 200.

737 out of 1840 structures passed through the filtering process. Each structure was subject to

minor modifications to create the desired target 3D structure.

2.1 Generating representative dataset of 3D RNA structures

Preparation of a training dataset by modifying data entities requires specific tools capable of

making subtle adjustments. When it comes to predicting alternative conformation of RNA struc-

tures, the best approach involves utilizing 3D RNA structure prediction tools. These tools predict

3D RNA structures based solely on the secondary structure, making them versatile and efficient.

Additionally, their results rather closely correspond to the align with reference. While this be-

haviour might not be ideal for their original purpose, it is well-suited for our problem, where

modifications are plausible and likely to feature user expectations.

8



2.2. Detailed analysis of the dataset 9

For RNAComposer [3], which requires secondary structure at the input, the structure can

be extracted either from a reference structure or can be computationally predicted based on the

reference sequence.

Secondary structure extractor (RNApdbee) and predictors [25] used during the dataset prepara-

tion include: RNAfold, Contrafold, ContextFold, CentroidFold, IPknot, RNAstructure, RNAshapes,

HotKnots.

Employing a diverse range of predictors enables RNAComposer to produce a broader range

of results, as these predictors exhibit variations in accuracy during base-pair predictions. This

diversity is a crucial step in generating a highly varied structure dataset.

Figure 2.1: Mol* ilustration of Crystal Structure of the E. coli Aspartyl-tRNA Synthetase:Yeast tRNAasp:aspartyl-
Adenylate Complex (PDBID: 1IL2, chain: C) with generated (orange) and reference (green) structures depicting
RMSD: 16.222 Å.

The method generates up to 30 3D RNA structures for each reference and evaluates them using

the RNAQUA tool, developed for the RNA-Puzzles contest [26]. RNAQUA calculates the RMSD

for each predicted 3D model and stores the results in XML format for each reference structure. The

tool considers only normalized PDB file atoms considered in the RNA-Puzzles contest. Specifically,

it retains atoms for the bases (C2, C4, C6, C8, N1, N2, N3, N4, N6, N7, N9, O2, O4, and O6) and

for the sugar-phosphate backbone (C19, C29, C39, C49, C59, O29, O39, O49, O59, OP1, OP2,

and P) [27].

This process is depicted in Figure 2.2.

2.2 Detailed analysis of the dataset

The RMSD value cuttoff used for predicted 3D models is equal to 60 Å in order to eliminate

outliers from the dataset.

Final range of the RMSD values and sequence length are provided in Table 2.1.

Figures 2.3 and 2.4 depict histograms illustrating that the generated dataset includes a range

of RMSD values, encompassing both high-quality and poorly predicted 3D RNA structures. This



2.2. Detailed analysis of the dataset 10

Se
t o

f 7
37

 e
xp

er
im

en
ta

lly
 d

et
er

m
in

ed
 3

D
R

N
A 

st
ru

ct
ur

es

Ev
er

y 
3D

 re
fe

re
nc

e
 s

tru
ct

ur
e

.fa
st

a 
fil

e

.s
eq

 fi
le

.fa
st

a 
fil

e

.fa
st

a 
fil

e
Ex

tra
ct

 s
ec

on
da

ry
 s

tru
ct

ur
e 

(.d
ot

) a
nd

 s
eq

ue
nc

e
(.f

as
ta

) f
ro

m
 th

e 
3D

 re
fe

re
nc

e 
(.p

db
)

Pr
ed

ic
t f

iv
e 

R
N

A 
3D

 s
tru

ct
ur

e 
(.p

db
)

Pr
ed

ic
t u

p 
to

 th
re

e 
R

N
A 

3D
 s

tru
ct

ur
e 

(.p
db

) 
 w

ith
 a

ss
is

t a
nc

e 
on

e 
of

 th
e 

fo
llo

w
in

g 
2D

 p
re

di
ct

io
n 

to
ol

R
N

Af
ol

d
R

N
As

tru
ct

ur
e

C
O

N
TR

Af
ol

d
C

en
tro

id
Fo

ld
C

on
te

xt
Fo

ld
IP

kn
ot

U
se

 R
N

As
ha

pe
s 

to
 fi

nd
 p

ai
rin

g

Pr
ed

ic
t t

hr
ee

 R
N

A 
3D

 s
tru

ct
ur

e 
(.p

db
)

U
se

 H
ot

Kn
ot

s 
to

 fi
nd

 p
ai

rin
g

Pr
ed

ic
t t

hr
ee

 R
N

A 
3D

 s
tru

ct
ur

e 
(.p

db
)

C
al

cu
la

te
 R

M
SD

 b
et

w
ee

n 
re

fe
re

nc
e 

an
d

pr
ed

ic
te

d 
3D

 m
od

el
s

.p
db

 fi
le

U
se

 R
N

Ap
db

ee
 to

 fi
nd

 p
ai

rin
g

F
ig
u
r
e
2.
2:
A
re
p
re
se
nt
at
iv
e,
n
on
-r
ed
u
n
d
an
t
d
at
as
et
ge
n
er
at
io
n
w
or
kfl
ow
.



2.2. Detailed analysis of the dataset 11

Parameter Min Max
RMSD 0.268 58.753
Sequence length 10 190

Table 2.1: Range of values for RMSD and sequence length.

0 10 20 30 40 50 60
RMSD value

0

1000

2000

3000

4000

5000

6000

7000
C

a
rd

in
a
lit

y

Figure 2.3: Distribution of the number of predicted 3D models in the context of their RMSD scores (in range 0-60,
with step 5).

40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0
RMSD value

0

10

20

30

40

C
a
rd

in
a
lit

y

Figure 2.4: Distribution of the number of predicted 3D models in the context of their RMSD scores (in range 40-60,
with step 2.5).

diversity could enable us to train valuable machine learning models. The majority of the dataset

consists of structures with small RMSD values, forming the essential core that faithfully represents

the correct fold of RNA structures. Values below 3 Å are considered to be in close proximity to

the correct structure.

The RNAQuANet training dataset contains 3D RNA structures of various length, with the

intention of covering multiple possible variations of RNA structure folds.

Figure 2.7 depicts a distribution of the RMSD scores (0-60 Å) of predicted 3D models in the



2.3. Training dataset splitting 12

25 50 75 100 125 150 175
Sequence length

0

50

100

150

200

250

C
a
rd

in
a
lit

y

Figure 2.5: Distribution of the number of predicted 3D models in the context of their sequence length (in range
10-190, with step 25).

40 60 80 100 120 140 160 180
Sequence length

0

20

40

60

80

100

120

140

C
a
rd

in
a
lit

y

Figure 2.6: Distribution of the number of predicted 3D models in the context of their sequence length (in range
40-190, with step 20).

context of their sequence length (10-190).

Additional two side plots on the top and the right side show concentration of dots with the

particular sequence length and RMSD score, respectively. The stripes are result of diversity of the

predicted 3D models within the context of the corresponding references.

The plot in Figure 2.8 depicts target structure aggregation by their reference structure using

resulted RMSD median.

2.3 Training dataset splitting

The training dataset was divided into three subsets: training, validation, test. Training and

validation were used during learning process for adjustment and the progress monitoring. Test set



2.3. Training dataset splitting 13

0 50 100 150
Sequence len

0

10

20

30

40

50

60

R
M

S
D

0

250

500

0 500

Figure 2.7: Distribution of the RMSD scores (0-60 Å) of predicted 3D models in the context of their sequence
length (10-190) [plot in the middle]. Plots on top and right side represents concentration of dots with the particular
sequence length and RMSD score, respectively.

0 50 100 150
Sequence len

0

5

10

15

20

25

30

35

40

R
M

S
D

0

20

0 20

Figure 2.8: Distribution of the median RMSD scores (0-40 Å) of predicted 3D models in the context of their
sequence length (10-190) [plot in the middle]. Plots on top and right side represents concentration of dots with the
particular sequence length and RMSD score, respectively.



2.4. Data distribution in subsets 14

was prepared for the final evaluation of the models developed.

Each subset is designed to contain structures that exhibit a wide range of characteristics.

The example provided aims to characterize structures based on their sequence length and median

RMSD score computed within the context of the reference. These datasets were grouped into

twenty five clusters (k = 25) using non-supervised k-means algorithm (Figure 2.9). This approach

facilitated the division of data into groups containing structures with similar characteristics in

terms of length and median RMSD. From each cluster, the reference structures were randomly

selected to create the final dataset, splitting it into training, validation, and testing sets in a ratio

of 6:2:2, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Normalised structure length

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis

e
d

 s
tr

u
ct

u
re

 m
e
d

ia
n

 R
M

S
D

Figure 2.9: Clustering results for predicted 3D RNA models using k-means.

Table 2.2 provides the final number of groups of reference and the corresponding predicted 3D

models for each set: train, validation, and test.

Subset References 3D models
Train 455 (61.8 %) 10890 (61.2 %)
Validation 161 (21.8 %) 3968 (22.3 %)
Test 120 (16.3 %) 2932 (16.4 %)

Table 2.2: Number of references and their corresponding 3D models of each set.

2.4 Data distribution in subsets

We present plots illustrating the distribution of data in considered subsets of the dataset developed,

namely the training set (Figure 2.10), validation set (Figure 2.11), and test set (Figure 2.12). Each

figure provides insights into a distribution of the median RMSD scores of predicted 3D models in

the context of their corresponding sequence length.

Analyzing the distribution of the median RMSD score with respect to structure length in each

subset is essential for high-quality training models and ensuring the collection of reliable and

representative data for robust model performance.



2.4. Data distribution in subsets 15

0 50 100 150
Sequence len

0

5

10

15

20

25

30

35
R

M
S

D

0

10

20

0 20

Figure 2.10: Distribution of the median RMSD scores (0-35 Å) of predicted 3D models in the context of their
sequence length (10-190) in the training set.

0 50 100 150
Sequence len

0

5

10

15

20

25

30

35

40

R
M

S
D

0

5

10

0 5

Figure 2.11: Distribution of the median RMSD scores (0-40 Å) of predicted 3D models in the context of their
sequence length (10-190) in the validation set.



2.5. 3D RNA structure descriptors 16

0 50 100 150
Sequence len

0

5

10

15

20

25

30

35

40

R
M

S
D

0.0

2.5

5.0

0 5

Figure 2.12: Distribution of the median RMSD scores (0-40 Å) of predicted 3D models in the context of their
sequence length (10-190) in the test set.

2.5 3D RNA structure descriptors

The RNAQuANet descriptors dataset was prepared for scenarios in which the basic training dataset

might prove challenging because of insufficient size for a successful application of deep learning.

This approach is assumes that the environment surrounding a nucleotide directly affects its prop-

erties. The algorithm (descs-standalone) [22] processes and generates separate PDB files con-

taining local 3D RNA structure descriptors from the third to the third-from-last nucleotide of the

particular RNA molecule. These neighborhoods are defined by in-contact residues located in the

spatial proximity represented by the distance between corresponding C5′ atom. Residues that

meet this criterion are considered by the descriptor.

This approach can result in multiple segments, which are fragments of the original structure

located in the spatial proximity of the central residue.

To prevent information redundancy during learning, it is essential to not only split the dataset

into training, validation, and test subsets, but also into subsets containing different number of

segments.

The RNAQuANet descriptors dataset was divided into:

• one-segment,

• two-segment descriptors,

• three and more segments ones.



2.5. 3D RNA structure descriptors 17

(a) (b)

(c) (d)

Figure 2.13: Example of: (A) one-segment descriptor, (B) two-segment descriptor, (C) two-segment descriptor,
and (D) seventeen-segment descriptor.

2.5.1 Processing pipeline for extracting descriptors

The RNAQuANet descriptors dataset was created by utilizing 3D RNA structures considered in

the RNAQuANet structures dataset.

Reference structure 3D structure of local RNA descriptor representing its spatial proximity was

built. A pair of residues are in-contact in 3D space when the distance between their C5′ atoms

does not exceed 16 Å. For each descriptor 3D structure from the structures dataset, the algorithm

selects the corresponding nucleotides from every 3D model and calculates the RMSD score. This

approach enable us to generate a substantial number of the RMSD values are computed.

After filtering outliers, identified as descriptors with RMSD values exceeding 26 Å, the entities

in each subset, categorized by the number of segments, were as follows:

• 141,634 (16.27%) one-segment descriptors,

• 370,422 (42.56%) two-segment descriptors,

• 358,311 (41.17%) three and more segments descriptors.

The respective training, validation and test sets follow the same distribution as in the RNA-

QuANet structure dataset.



2.5. 3D RNA structure descriptors 18

0 2 4 6 8 10 12 14 16 18 20 22 24 26
RMSD

0

25000

50000

75000

100000

125000

150000

175000

200000

Ca
rd

in
al

ity

Figure 2.14: Distribution of the number of all local 3D structure descriptors in the context of their RMSD score
computed within the context of the reference 3D structure descriptor (in range 0-26, divided to 10 bins).

0 2 4 6 8 10 12 14 16 18 20 22 24 26
RMSD

0

10000

20000

30000

40000

50000

Ca
rd

in
al

ity

Figure 2.15: Distribution of the number of single-segment local 3D structure descriptors in the context of their
RMSD score computed within the context of the reference 3D structure descriptor (in range 0-26, histogram divided
to 10 bins).

The cardinality of each subset with respect to the number of segments were provided in Ta-

ble 2.3.

Subset One segment Two segments Three and more segments
Train 90,091 (16.38 %) 229,990 (41.81 %) 229,933 (41.80 %)
Validate 29,276 (16.26 %) 80,218 (44.57 %) 70,457 (39.15 %)
Test 22,267 (15.86 %) 60,214 (42.88 %) 57,921 (41.25 %)

Table 2.3: Cardinality of considered subsets of the descriptor-based training dataset.

The plots (Figure 2.14, 2.15, 2.16 and 2.17) illustrate that training needs to be conducted

separately for descriptors containing three or more segments.



2.6. Missing data handling 19

0 2 4 6 8 10 12 14 16 18 20 22 24 26
RMSD

0

20000

40000

60000

80000

100000

Ca
rd

in
al

ity

Figure 2.16: Distribution of the number of two-segment local 3D structure descriptors in the context of their RMSD
score computed within the context of the reference 3D structure descriptor (in range 0-26, histogram divided to
10 bins).

0 2 4 6 8 10 12 14 16 18 20 22 24 26
RMSD

0

10000

20000

30000

40000

50000

60000

Ca
rd

in
al

ity

Figure 2.17: Distribution of the number of three-segment and more local 3D structure descriptors in the context of
their RMSD score computed within the context of the reference 3D structure descriptor (in range 0-26, histogram
divided to 10 bins).

2.6 Missing data handling

When considering all possible features related to torsion and bond angles, there may be situations

where a specific angle is not defined, resulting in a missing (NaN) value.

This issue is associated with the angle’s origin. Some angles rely on certain nucleobases.

Our team decided not to set a default replacement for missing values to avoid limiting the

dataset’s potential applications in the future.



Chapter 3

Selected features to describe 3D RNA

structures

Feature extraction is a crucial step in the field of machine learning, playing a significant role in

transforming raw data into a format that is suitable for training and analysis of a model. The

essence of the problem lies in identifying and selecting relevant information from the original data,

simplifying its representation while retaining essential characteristics and structure of 3D RNA

structures.

While considering feature extraction, there are two important points to consider:

• dimensionality reduction, as high-dimensional data with a lot of features poses a challenge
known as the curse of dimensionality: as the dimensionality increases, the volume of the data

space grows exponentially, making it significantly more difficult for machine learning models

to generalize well,

• noise reduction, as raw data often contains irrelevant or redundant features that do not
contribute meaningfully to the learning process. Furthermore, these features may introduce

noise, making it harder for the model to recognize underlying patterns.

Achieving both dimensionality reduction and noise reduction, while retaining crucial charac-

teristics of the input data, is a delicate balancing act in the realm of feature extraction. It involves

making decisions to simplify the dataset for the learning process while ensuring that all critical

information about the data in question is retained. Obtaining this tradeoff between mentioned

points involves identifying and retaining features that have significant contribution to the learning

process, ensuring the extracted subset captures the essential patterns within the data [28].

In graph neural networks, features are represented as node and/or edge attributes. Nodes

represent entities, whereas edges represent relationships taking place between entities. Each node

and/or edge is associated with a feature vector that encodes information about the entity and/or

its adjacent neighborhood.

In PyTorch Geometric [24], each graph is represented by a single Data object, which in our

case is described by four attributes:

• x – a tensor representing nodes in the graph and their features. Each row corresponds to a
node, and each column corresponds to a feature dimension for that node.

• edge index – a tensor representing edges in the graph. Each column of edge index corre-
sponds to the particular edge, and the pair of values in that column includes the indices of

20



3.1. Node features 21

Figure 3.1: Example 3D RNA structure and its graph-based representation.

the nodes that form the edge. In PyTorch Geometric, all graphs are directed graphs, so if

a given graph is undirected, then both (u, v) ∈ edge index and (v, u) ∈ edge index, where
u, v are adjacent nodes.

• edge attr – a tensor representing features associated with each edge in the graph. Each row
corresponds to the particular edge, and each column corresponds to a feature dimension for

that edge.

• y – a tensor containing graph-level labels (optional). It is used where the goal is to predict
a label or property for the entire graph.

In the context of three-dimensional RNA structures, we will consider both node and edge

features.

Specifically, each node in the graph corresponds to a single nucleotide in the RNA sequence,

and edges are established based on spatial proximity of relevant residues (Figure 3.1). For our

label, we will use the expected RMSD value for a given structure. The way in which RMSD scores

were computed was described in Chapter 2.

3.1 Node features

In our model, each node represents a single nucleotide. Every residue is depicted by its correspond-

ing distinctive features. They not only distinguish one nucleotide from another, but also provide

a solid foundation for application within the learning process.

Node features:

• nucleobase – one of the four nitrogenous bases: either A, C, G, or U, represented using
one-hot encoding,

• C1′ atom coordinates,

• all nucleotide bond angles,

• all nucleotide torsion angles,

• base pairings – represented using one-hot encoding.



3.2. Edge features 22

3.2 Edge features

In our model, edges are formed when two residues are closely located in three-dimensional space.

We adopted a convention where an edge is formed between two residues if the Euclidean distance

in three-dimensional space does not exceed 16 Å – this means that a pair of residues is in-contact in

3D space. This value can be altered in the configuration file if one prefers to use different distance

for considering spatial proximity during the feature extraction process.

Thus, we utilize the following edge features:

• sequential distance: the number of nucleotides located in-between the pair of residues,

• Euclidean distance between the pair of residues in three-dimensional space, up to 16 Å.

All spatial distances were calculated using coordinates of the atom C1′ of considered nucleotides.

3.3 Preprocessing pipeline for extracting structural features

Before running the proper feature extraction process, each PDB file undergoes filtering, so that

only lines starting with ATOM are considered. This ensures that only relevant information essen-

tial for feature extraction is retained, enhancing both time and memory efficiency during further

processing.

Next, using RNAgrowth [29], we extracted features from filtered PDB files representing pre-

dicted 3D models or all local descriptors extracted from them. We use atom C1′ for distance

calculation. This value can be altered in the configuration file if one prefers to use different atom

for distance and coordinate calculation.

For spatial proximity, we consider residues in the vicinity of 16 Å in the three-dimensional space,

using Euclidean distance as a metric (further elaboration on this topic is presented in Section 3.2).

The results are represented by the following files in the tab-separated values format:

• 3dn – matrix of inter-residue distances in three-dimensional space. Specifically, as the gen-
erated filename’s suffix is 16.0.3dn, that means we consider distance between residues only

up to 16 Å.

• ang – represents the bond angles of the sugar-phosphate backbone of RNA,

• atr – represents all torsion angles;

• bon – represents all bond distances of the considered 3D RNA structure,

• sqn – represents the immediate predecessor and successor of each residue in the sequence.

Furthermore, using PDBParser we extracted coordinates from the filtered PDB file. Next,

using RNApolis annotator script we extracted secondary structure information from the analyzed

3D structure. It is done by creating a mapping between 2D and 3D structures, and then extracting

the 2D structure in dot-bracket notation. Dot-bracket notation is a concise representation of the

secondary structure of RNA molecules where dot represents unpaired nucleotides, open bracket

represents the opening residue of the base pair, and closed bracket represents the closing residue

of the base pair (Listing 3.1). In our model, we consider pseudoknot order by mapping different

types of brackets onto separate and distinct categories, using one-hot encoding.



3.4. Final form of the data 23

Data attribute Description Features

x Nodes and their features

Nucleobase
Coordinates (C1′ atom)
Bond angles
Torsion angles
Base pairings

edge index Edges –

edge attr Edge features
Euclidean distance (C1′ atoms)
Sequential distance

y Label RMSD

Table 3.1: Summary of all attributes and features for a single PyTorch Geometric Data object representing a
structure; optional attributes are represented in italic.

>1B23_1_R

gGCGCGUAACAAAGCGGAUGUAGCGGAUGCAACCGUCUAGUCCGGCGACUCCGGAACGCGCCUCCA

(((((((.......(((((...((((......))))...))))).((....))..)))))))....

(((((((......((((.((((.....)))).))))....(((((.....))))))))))))....

(((((((.......((((.((.((((((...........)))).)).))))))..)))))))....

(((((((.......(((((...((((......))))...)))))...........)))))))....

Listing 3.1: Sequence 1B23 1 R and its 2D structure in dot-bracket notation. Depicted are the first four lines.

3.4 Final form of the data

The final form of the training data of a single structure is given in Table 3.1.

The data is then saved to a HDF5 file format [30]. HDF5, which stands for Hierarchical Data

Format version 5, is a file format particularly well-suited for storing and organising large amounts of

data. HDF5 organizes data in a hierarchical structure similar to a file system. Its flexibility allows

to store data of any type, including complex ones, supporting accurate and succinct representation

of our preprocessed training data. Its wide adoption and acceptance in the scientific community,

resulting in wide availability of libraries and tools supporting the format was one of primary reasons

for choosing HDF5 as our storage format.

After processing all of the structures within a given 3D RNA structures collection, the respective

HDF5 files are then concatenated to form a full, distinct dataset fully prepared to be used during

the learning process. The structure of such HDF5 file is depicted in Figure 3.2. Performing the

full preprocessing pipeline on the input dataset yields three HDF5 files: train.h5, val.h5, and

test.h5, containing training, validation, and test set, respectively.

3.5 Assessing the set of features

To summarize our graph representation of a three-dimensional RNA structure, each node repre-

sents a nucleotide and has the following features associated with it: nucleobase, its representative

coordinates, bond angles, torsion angles, and secondary structure information. Furthermore, we

consider an edge between two nodes if and only if the Euclidean distance between the nodes in

three-dimensional space is less than a given threshold, which we set at 16 Å.

Considering another approach, the Atomic Rotationally Equivariant Scorer (also known as

ARES) [17] comprises of larger input space, but specific nodes have much smaller feature dimen-

sionality. This is due to the fact that ARES uses individual atoms to represent nodes of the graph,

and considers only atom type and 3D coordinates of neighboring atoms as node features.



3.5. Assessing the set of features 24

Figure 3.2: Visualization of HDF5 file using myHDF5 tool [31] for exploring and visualizing HDF5 files.
The depicted HDF5 file contains multiple structures depicting one-segment descriptors. Each structure has
four attributes: x, edge index, edge attr, y. The matrix shows values of x – node features – of structure
1A4D 1 A B A 85 G 1a4d S 000163.

In our graph representation, we use nucleotides for nodes in the graph. Our approach goes

beyond this basic foundation by incorporating additional node features, such as nucleobase com-

position, planar and torsion angles, and secondary structure information. By integrating these

features, our graphs become more compact. This approach not only enhances the complexity of

our representation but also has the potential to allow for a more thorough understanding of the

underlying biological structure during the learning phase.



Chapter 4

Graph Neural Network-based model

architecture

Three-dimensional RNA structures exhibit inherent structural complexities and spatial relation-

ships among individual nucleotides, resembling a graph-like topology. Each nucleotide can be

viewed as a node, whereas interactions between nucleotides such as sequential adjacency or spatial

proximity form edges, shaping the structural framework of the RNA molecule. This graph-like

nature of RNA structures provides a compelling basis for using graph neural networks (GNNs) in

the realm of their quality assessment.

Graph neural networks are a class of neural networks designed to work with graph-structured

data. Nodes represent entities, whereas edges represent relationships or interactions between enti-

ties. GNNs aim to learn meaningful representations of graphs, capturing the underlying structure

and relationships within the data.

There are many different problem types associated with GNNs, including but not limited to:

• node classification, in which the goal is to assign a label to each node in the graph: being
given the ground-truth labels for a small subset of nodes, the task is to infer the labels for

all remaining nodes,

• graph-level classification, in which the objective is to assign discrete class labels to entire
graphs based on their structural properties,

• graph-level regression, in which the goal is to predict a single continuous value for the entire
graph.

In the context of quality assessment of three-dimensional RNA structures using graph neural

networks, the problem clearly fits to graph-level regression. Specifically, we are aiming to predict

a single continuous value (i.e., root-mean-square deviation score) for an entire three-dimensional

structure represented using a graph. The exact graph representation and properties used to de-

scribe 3D RNA structures were described in Chapter 3.

4.1 Graph Neural Network Foundations

Our architecture operates as a graph regression network (GRN ) with the objective of predicting

a numerical value by leveraging a graph-based representation of the input data. This aligns with

the established usage of the terms within the field of deep learning.

In the context of our problem, we are employing three distinct components:

25



4.2. Architecture design and analysis 26

• GCN convolutions, using GCNConv layers with fixed convolutional kernel to compute node
representations [15];

• GAT convolutions, applying GATConv layers which utilize the concept of attention mechanism
to assign varying importance to each node’s neighbors [16];

• GAT transformer convolutions, using TransformerConv layers which incorporates both fea-
ture and label propagation and applies a masked label prediction strategy [32].

Of these, especially GAT convolutional layers are of importance, as they consider edge fea-

tures in their input/output space. As mentioned in Chapter 3, edge features are stored using

edge attr attribute of PyTorch Geometric [24] Data object. Whereas both GCNConv layer and

TransformerConv layer consider x and edge index as their inputs (representing nodes with their

features and edge indices, respectively), GATConv layer additionally uses edge attr for its input

space besides the former two, allowing to propagate not only information about node features but

also edge features.

Additionally within our framework we also make use of fundamental layers used in deep learn-

ing, such as Rectified Linear Unit [33] to incorporate non-linearity into the model and batch

normalization [34] to enhance efficiency and stability throughout the learning process.

4.2 Architecture design and analysis

Input

GATConv BatchNorm ReLU GAT Layer 1

GATConv BatchNorm ReLU GAT Layer 2

GCNConv GlobalMeanPool GCN Layer

Linear LinearReLU MLP Layer

Output

Figure 4.1: GRN architecture using GAT convolutional layers, slash arrows indicate where dropout occurs.

The presented architecture is a graph neural network (GNN ) model structured within the

PyTorch [35] framework using the Sequential module. This architecture is specifically designed

for tasks involving our graph-based representation of three-dimensional RNA structures, especially



4.2. Architecture design and analysis 27

Input

Transformer
Conv

BatchNorm ReLU Transformer Layer 1

Transformer
Conv

BatchNorm ReLU Transformer Layer 2

GCNConv GlobalMeanPool GCN Layer

Linear LinearReLU MLP Layer

Output

Figure 4.2: GRN architecture using Transformer convolutional layers, slash arrows indicate where dropout occurs.

regarding the quality assessment of such structures, which, as mentioned before, falls into the

graph-level regression problems.

In our work, we employed two very similar approaches that vary in the components integrated

into the initial layers. One of these methods involves the use of GAT convolutional layers (Fig-

ure 4.1), enabling the incorporation of edge features by passing edge attr as an input to the

convolutional layer. The second approach uses Transformer convolutional layers (Figure 4.2).

Given the substantial similarity between both approaches, with distinctions confined to these ini-

tial layers, we will describe a single architecture, highlighting any noteworthy differences within

the context of the problem.

Our input consists of an instance of a PyTorch Geometric Data object, representing our graph:

three-dimensional RNA structure with its encoded features.

GAT/Transformer Layer 1. The first layer in the network is a GAT/Transformer layer. It

initializes with a GATConv/TransformerConv component with input dimension of 99 and output

dimension of 256, using 4 attention heads, and making use of dropout [36] (regularization technique

in neural networks involving the temporary exclusion of random neurons during training to prevent

overfitting). This layer processes the input graph data consisting of node features (x) and edge

connections (edge index). Furthermore, when using GATConv layer then the input space contains

also edge features (edge attr). The output of this layer is then subjected to batch normalization

with an input dimension of 1024, followed by Rectified Linear Unit (ReLU ) activation to introduce

non-linearity in the model.

GAT/Transformer Layer 2. The subsequent layer is another GAT/Transformer layer,

similar to the first but with different feature dimensionality and parameters. Specifically, the

convolutional component has input dimension of 1024 and output dimension of 256 and uses

8 attention heads. The resulting output is again processed through batch normalization and



4.3. Summary 28

ReLU activation.

GCN Layer. Following the two initial GAT/Transformer layers, a standard GCN convolu-

tional layer is introduced. This layer takes the transformed graph data and edge connections as

input of dimensionality 2048, applying graph convolution to generate a further refined represen-

tation with dimensionality 256. Global average pooling is then applied to aggregate information

across all nodes.

MLP Layer. The architecture concludes with a set of fully-connected layers, analogous to a

multi-layer perceptron (MLP). It consists of linear transformation, ReLU activation, then at last

another linear layer with one output feature for the final prediction.

In conclusion, the architecture incorporates GAT/Transformer and GCN layers for graph-

based feature extraction, batch normalization for stabilization during training, ReLU for intro-

ducing non-linearity and global average pooling [37] for aggregation. The fully-connected layers at

the end enable the model to produce the final prediction based on the processed graph data. This

structured approach makes possible for the model to be capable of capture intricate relationships

and patterns within the input data.

4.3 Summary

Table 4.1 provides a shorthand summary on our architecture variants applied to our problem.

Specifically, it lists all layers with their components, as well as the dimensionality of the input

and output channels, applied transformation, and the number of attention heads in the case of

GATConv or TransformerConv components.

Using the described multi-layered approach allows the model to effectively extract features

from nodes and edges, leveraging attention mechanisms to focus on relevant structural elements.

One strength of our architecture, stemming directly from our approach, is the ability to prevent

overfitting. The incorporation of dropout and batch normalization in the GAT/Transformer lay-

ers ensures the regularization mechanism applied during training, preventing the network from

becoming too adjusted to the training data. Batch normalization further contributes to stabilizing

the learning process by normalizing inputs within each batch, reducing internal covariate shift and

enhancing generalization. Further information about the learning process and hyperparameter

optimization is given in Chapter 5.

Additionally, using global mean pooling at the end of graph convolutional layers enables the

model to aggregate information, increasing the ability to capture essential structural characteristics

and preventing overemphasis on specific local features. This pooling mechanism promotes a more

general understanding of the entire graph, contributing to the capacity of quality assessment of

diverse 3D RNA structures.



4.3. Summary 29

Layer Component In Out Heads Transformation

GAT/
Transformer Layer 1

GATConv/
TransformerConv

99 256 4 (x, edge index, *) → x′

BatchNorm 1024 1024 –
x → x′

ReLU 1024 1024 –

GAT/
Transformer Layer 2

GATConv/
TransformerConv

1024 256 8 (x, edge index, *) → x′

BatchNorm 2048 2048 –
x → x′

ReLU 2048 2048 –

GCN Layer
GCNConv 2048 256 – (x, edge index) → x′
GlobalMeanPool 256 256 – (x, batch) → x′

MLP Layer
Linear 256 64 –

x → x′ReLU 64 64 –
Linear 64 1 –

Table 4.1: Summary of GRN architecture details using GAT/Transformer convolutional layers. Asterisk * repre-
sents edge attr when applied to GAT convolutional layers.



Chapter 5

Learning process description

In our project, we carried out three learning processes that differed significantly in their char-

acteristics, despite using the same neural network architectures in each of them discussed in the

previous chapter. The differences between the learning processes were due to both the variation

in the size of the training datasets and the approach used. Our first training used the classical

approach, i.e., starting with a model with random weights. It was conducted on relatively small

datasets that contained relatively diverse 3D structures in terms of size. Our next approach was

to train on a huge dataset that we prepared during the research. The dataset cited contains more

than half a million local 3D structure descriptors motivated us to change approach used because

of both computational power and overfitting elimination. The final learning process was Transfer

Learning [23], which involved using the pre-trained model from the second learning process and

training it again on smaller set of larger 3D RNA structures.

5.1 Common stages of the learning process

Independently in every learning process, some common stages were considered. First of all, pre-

processing had to be performed on PDB files containing 3D RNA structures. In order to automate

the whole process, we introduced a configuration file into our project, which was created for each

training dataset considered. In the repository, we provided a guidance on how to create such a

file and what the different options are available. In the context of training a neural network, a

very important aspect is the splitting between training, validation, and test datasets. The most

common data split ratios are 7:2:1 and 8:1:1. In our problem, the situation is not so simple. The

datasets contain alternative conformations of the same RNA molecules. In order to prevent an

incorrect estimation of the generalization error, it is necessary to make sure that in each subset

the distribution of data characteristics is comparable.

For this reason, we decided that the splitting into training, validation, and test collections

would already take place at the preprocessing stage. When creating an archive with 3D RNA

structure files, it is necessary to divide them into three subdirectories. The datasets we used fulfill

this feature and are approximately split in ratio 6:2:2. The preprocessing also results in three H5

files – train.h5, val.h5, and test.h5. Each file contains four tensors: x, edge index, edge attr,

and y, which were described in Chapter 3.

The next common step was to create a special class inheriting from the PyTorch Geometric [24]

Dataset. This class implements how the data will be loaded. Because of the differences in dataset

sizes, we implemented two classes. The first simply reads the entire H5 file into RAM memory.

The second reads the training data as a stream. The next step is to select the parameters:

30



5.2. Preliminary approach 31

• batch size – the number of graphs processed simultaneously,

• patience – the value of epochs after which training should be terminated if the network has
not reached a lower generalization error,

• max epochs – the maximum number of epochs.

It is also worth mentioning that, despite the graph neural network architecture used in each ap-

proach, we used other hyperparameters optimized on the data considered. To deal with overfitting,

we mainly used:

• batch normalization – normalizes node features during training, enhancing stability and
speeding up convergence [34],

• dropout – regularization method in neural networks where random neurons are temporarily
omitted during training [36].

5.2 Preliminary approach

Our first approach was to train our model on the dataset provided by ARES [17], which by

default is split into a training set that contains 1000 alternative conformations of 14 experimentally

determined 3D RNA structures each and a test set that contains 1000 alternative conformations

of 4 experimentally determined 3D RNA structures each. We additionally added a validation set

that contained 4 structures from the training set. The ARES neural network also uses GNNs, but

differs substantially in the graph representation of RNA structures, as was explained in Chapter 3.

The model we trained is comparable to the model provided by ARES (Chapter 7) on ARES test

dataset, showing that Feature Extraction and expert knowledge is important especially for neural

networks.

Figure 5.1: Epoch-wise Loss (MSE) Analysis our model trained on ARES dataset.

This was a very important observation for us because it proved that our project has potential.

We also noticed that the reference 3D RNA structures used by ARES are quite short and do not

contain that many nucleotides. Additionally, we noticed that the set of RMSD values is quite



5.3. Training on large dataset 32

narrow. For this reason, we decided to generate our dataset (Chapter 2) to contain more 3D RNA

structures and ensure a more diverse set of the RMSD values. We trained an identical model on

the new data. The generalization error measured on the ARES test data was slightly higher than

in the our model trained on ARES training dataset, but we noticed a very high error in both

training and generalization on our test data. Because of that, we wanted to test the ability of the

network to minimize the training error. To do that, we attempted to force overfitting by increasing

the complexity of the model. Unfortunately we were not able to get down to a satisfactory value.

For this reason, we decided not to share the model and started an approach with training on

local 3D RNA structure descriptors. In our opinion, the number of alternative conformations of

the reference structures was too low or the complexity of the model architecture used was too

low. Our conclusions are argued by the fact that our set had only a few to a dozen alternative

conformations while the ARES set had as many as a thousand, and the high value of the loss

function on the training set even for architectures with a very large number of parameters.

5.3 Training on large dataset

Our next approach was to train on a large dataset that consists of local 3D RNA structure de-

scriptors extracted from previously predicted 3D RNA models. The argument convincing for this

approach was ARES’s conclusions that a network trained on small 3D structures performs well

on larger 3D structures. These conclusions somewhat follow from the architecture of graph neural

networks. A single layer of Message Passing aims to transform the feature values of each node

into new feature values taking into account both non-linear transformations and the feature values

of neighboring nodes. It follows that the graph neural networks are independent of the size of the

graph, and that the features they operate on in successive layers are universal. For this reason,

we decided to prepare a very large dataset that consists of rather small structures and learn the

neural network on it to find general local spatial features that could be generalize for larger 3D

RNA structures. In addition, we divided our dataset into one, two, and three or more segmented

descriptors and verified how our architecture would perform on each subset and independently

how it would perform on a dataset consisting of all 3D structure descriptors. However, each subset

contained so many structures that it was impossible to load them into RAM.

For this reason, we implemented a special class inheriting from the Dataset class of the PyTorch

library that, instead of loading all the data into memory immediately, loaded them in a streaming

way when needed. Our implementation used the Hierarchical Data Format (HDF5) [30] and for

an Intel i5-6600K processor on a single thread loaded about 600 local 3D RNA structures per

second. The whole process was very easy to parallelize, giving us even faster read speed, which

was completely sufficient for us. HDF5 is a standard hierarchically organized data format used to

store large amounts of information. The data is structurally arranged into groups, each of which

can contain data sets or further groups. Each dataset can store a variety of data types, both

basic and more advanced – in our case these were NumPy arrays, which we converted to tensors

from PyTorch during loading. In addition, our features extraction process left some features as

missing values due, for example, to the non-existence of certain bond/torsion angles for certain

nucleobases. We decided that our datasets should contain null values and that their substitution

would only occur at the stage of loading the dataset into memory. Our decision was motivated by

the desire to make available a more versatile dataset that everyone could customize for themselves.

The HDF5 format supports scalability, enabling the efficient management of large datasets. It

is used in a variety of scientific and industrial fields, thanks to its data compression capabilities,

support for various programming languages and metadata support.



5.3. Training on large dataset 33

Figure 5.2: Epoch-wise Loss (MSE) Analysis of our model trained on all descriptors.

Figure 5.3: Epoch-wise Loss (MSE) Analysis of our model trained on only one segment descriptors.

A very important task in training neural networks is to prevent model overfitting as quickly

as possible. To do this, a validation set is used which contains the data on which the network has

not been learned and after each epoch the generalization error is estimated. As a rule of thumb,

an epoch means going over the entire training set and updating the weights after each data batch.

The matter gets complicated when we have almost 600,000 samples and a batch size of 32, as

this gives us almost 20,000 updates of the model weights. With such a large number of weight

updates, detecting overfitting by estimating the error only for every single epoch seems to be a

problem, we committed at the very beginning. Fortunately, we quickly realized that this approach

was inappropriate. Taking this into account, we implemented additional functionality to our class

restricting the training set to random 80,000 samples per epoch (the restriction is passed as an

argument to the constructor). In this way, we were able to detect overfitting much faster and train

models that generalize better. In comparison, without implementing this approach, it happened



5.3. Training on large dataset 34

Figure 5.4: Epoch-wise Loss (MSE) Analysis of our model trained on only two segment descriptors.

Figure 5.5: Epoch-wise Loss (MSE) Analysis of our model trained on only three and more segments descriptors.

that for certain parameters of our architecture, overfitting has already occurred during the first

epoch.

Unfortunately, the solution discussed above did not help us with overcoming early overfitting

on the entire dataset. Limiting the number of iterations during a single epoch on the training set,

only worked well when we applied it to training on three subsets trained independently:

• one segment descriptors (seg1),

• two segment descriptors (seg2),

• three and more segment descriptors (seg3).

The result is represented by three models performing well in different situations. In Figure 5.2

we can observe very fast overfitting and weakness of the model for generalization. It is worth



5.4. Transfer Learning application 35

noting that the training sets of each of our subsets were not equidistant, but during each epoch

the model saw exactly 30,000 samples from each subset. In the Figures 5.3, 5.4, and 5.5, we can

observe longer learning processes and better generalization on the validation sets of each subset.

In Chapter 6, we also present the generalization results of each model on the validation and test

sets of each subset.

5.4 Transfer Learning application

Our final approach was to overtrain the seg2 model from the previous trial to the ARES data.

Admittedly, during the previous training, we additionally verified, after each epoch, how our model

performed on the data from the ARES, but we did not take this indicator into account as a key

one for detecting overfitting and completing the learning, as the ARES set is much smaller than

our validation set and we decided that it was not that representative. Nonetheless, we were intent

on creating a model that generalizes as well as possible and that would be best for comparison

with competing models. For this reason, we froze the weights of the graph layers of our neural

network that were responsible for transforming the graph and focused on training only the weights

of the layers of the fully-connected network part.

Figure 5.6: Epoch-wise Loss (MSE) Analysis (applying transfer learning on seg2 and ARES datasets).

The model adapted very quickly to the new data and achieved low loss function values on

the validation set. However, we predicted that a model trained in this way would either be able

to achieve the best results on the ARES test set, or, despite its worse performance, maintain

satisfactory results on subsets of descriptors.

5.5 Optimization of hyperparameters

The selection of hyperparameters and the proper construction of a neural network are crucial ele-

ments in the process of developing machine learning models. It is a process that requires attention,

experience, and experimentation, as it significantly influences the quality and effectiveness of the

model [38].

The first key element is the proper selection of hyperparameter values, such as the learning

rate, regularization coefficients, and optimizer parameters. These parameters affect the dynamics



5.5. Optimization of hyperparameters 36

of the learning process. An excessively high learning rate can result in oscillations in the learning

process, making it difficult for the model to converge, while a too low learning rate may lead to

a very slow learning process. Proper regularization is crucial in preventing overfitting, which can

result in poor generalization to new data.

The size of the neural network, i.e., the number of layers and neurons in each layer, is another

essential aspect. A network that is too simple may not be able to learn sufficiently complex patterns

in the data, while one that is too complex may lead to overfitting and excessively long training

times. Finding the right balance between complexity and generalization ability is crucial.

The proper selection of hyperparameters and the size of the network also impact the consump-

tion of computational resources. Inefficiently chosen parameters may lead to excessive utilization

of computational power or excessively long training times. Optimizing these parameters allows for

enhancing the model’s performance and adapting it to the available computational resources.

In practice, the hyperparameter tuning process often requires multiple experimental iterations.

Exploring different parameter combinations, monitoring the learning process, and analyzing val-

idation results are inherent elements of this process. Correctly tuning hyperparameters and the

size of the network can lead to the creation of a model that achieves high prediction accuracy,

generalizes well to new data, and is efficient in terms of computational resource consumption.

Initially, we created a very rigid architecture in our project and wanted to experiment by testing

different combinations of hyperparameters. However, it quickly became apparent that, firstly, this

approach was too time- and resource-consuming, as well as simply inefficient. A much better way

turned out to be manual experimentation and analysis of the results. By observing how the loss

value changes on the training set and the validation set, as well as analyzing the model output, we

were able to select parameters and regularize our network much better. For example, for a while

we had a pretty good mean generalization error, but it turned out that our network was returning

results close to the mean RMSD value of the dataset and additionally with a very small variance.

Obviously such a model was useless, but a Grid Search or Random Search strategy can lead to

such a situation. It is also worth noting that this problem existed for the ARES dataset and by

creating our own dataset, we took care to have a much higher variance on the set of the RMSD

values, which offset this problem.

For the reasons described above, our next idea was to initially increase the complexity of

the model until we reached a satisfactory result on the training set, and then try to reduce the

complexity of the model and apply regularization techniques to get a model that generalizes well. In

addition, we experimented with the multiple layers of graph neural networks available in PyTorch

Geometric. In the end, we were most satisfied with using the GATConv and TransformerConv

layers.



Chapter 6

Evaluation of the developed models

Reliable evaluation of neural network models is a crucial step in the design and implementation of

machine learning systems. In short, it involves evaluating the effectiveness and the performance of

the models developed in the context of a specific problem. This process is an integral part of the

life cycle of a machine learning model, enabling us to observe and deduce from how well the model

developed performs in predicting results on totally new, previously unknown data. The purpose

of the evaluation is to obtain an objective assessment of the model’s performance compared to

well-known competitors and our previous models.

We decided to examine two metrics during the evaluation:

• Mean Squared Error (MSE ) value of each model developed on both validation and test sets,

• the distribution of the predicted values of each model developed on both validation and test
sets.

The first metric is commonly during training machine learning models. Its popularity stems

from several important features. First, the MSE is sensitive to errors, taking into account the

squares of differences between predicted and ground-truth values. This makes larger errors, so it

has a greater impact on the outcome, which can be important in situations where there are large

discrepancies between predictions and reality. Second, the MSE is well-defined, making it easier

to calculate and interpret. Its definition as the arithmetic mean of the squares of the differences

is simple and clear.

We analyzed the distribution of values because in the early stages of our project we noticed that

our models often returned very narrow ranges of the RMSD values close to the mean computed

within the training set. Such models had fairly low MSE, but were obviously useless.

In the process of evaluation, we used four different datasets: the ARES training dataset [17],

seg1, which contains smallest local one segment 3D RNA structure descriptors, seg2, which contains

descriptors that consist of two-segments, seg3, which contains descriptors that have three or more

segments.

The our model trained on the ARES training data (Figure 6.1) is primarily good on ARES

validation and test sets. It also performs quite well on the smallest descriptors – one segment. For

the other sets, the results are unacceptable.

The model trained on one segment descriptors (Figure 6.2) performs much better on their val-

idation and test sets, and does quite well on the ARES set, although far worse than the previously

discussed model. For the other sets, the results are unacceptable.

The model trained on two-segment descriptors (Figure 6.3) is in our opinion the best model if

the results for all datasets are compared, but on the data from ARES it is extremely incorrect.

37



Evaluation of the developed models 38

Figure 6.1: Average MSE across datasets – for the model trained on the ARES dataset.

Figure 6.2: Average MSE across datasets – for the model trained on seg1 dataset.

Figure 6.3: Average MSE across datasets – for the model trained on seg2 dataset.

For this reason, we performed Transfer Learning (Figure 6.4) to improve the results on the ARES

dataset, but the resulting model turned out to be the worst on the all datasets including of

descriptors.

For the largest descriptors (Figure 6.5), we failed to get low scores even for the seg3 validation

and test sets.



Evaluation of the developed models 39

Figure 6.4: Average MSE across datasets – for the Transfer Learning model trained on both seg2 and ARES
datasets.

Figure 6.5: Average MSE across datasets – for the model trained on seg3 dataset.

Boxplot is a graphical tool for representing the distribution of numerical data. It is designed

to show the central tendency, scatter, and identify outliers. The main element is a box, covering

50% of the data between the lower and upper quartiles. The median is indicated by a line inside

the box. “Whiskers” extend from the box to the outermost points, helping to see the spread of

the data. Boxplots are used for comparisons between groups, making it easier to visualize the

distribution of data and identify possible outliers.

It is worth noting that virtually all datasets (except seg3 ) have a lot of outlier observations,

which makes the learning process more difficult. The datasets, we generated have wider sets of

values and on average more structures with higher RMSD.

Models trained on the ARES and seg1 data predict fairly narrow sets of values, and those

trained on seg2 and seg3 for the ARES data have a strongly shifted median toward higher values,

which identifies a problem with the performance of these models on the ARES dataset.



Evaluation of the developed models 40

Figure 6.6: Distribution of the RMSD values – model trained on the ARES dataset.



Evaluation of the developed models 41

Figure 6.7: Distribution of the RMSD values – model trained on the seg1 dataset.



Evaluation of the developed models 42

Figure 6.8: Distribution of the RMSD values – model trained on the seg2 dataset.



Evaluation of the developed models 43

Figure 6.9: Distribution of the RMSD values – model trained on the seg3 dataset.



Evaluation of the developed models 44

Figure 6.10: Distribution of values – Transfer Learning.



Chapter 7

Analysis of the obtained results

One of the methods of assessing the quality of a given machine learning-based model is using

comparative analysis. Comparative analysis involves evaluating and comparing two or more ML-

based models to identify their strengths, weaknesses, and differences.

In the context of our problem, which involved assessing the quality of three-dimensional RNA

structures using graph neural networks, it is essential to identify promising models which can be vi-

ably used for such a comparative analysis. We thus, considered solutions using graph convolutional

networks and operated on graph representations of three-dimensional RNA structures.

To benchmark our RNAQuANet models, we decided to compare them with ARES model [17].

We also analyzed our dataset construction and selected features within the context of the ARES,

thus it is sensible to assess our results with the ones obtained by the available ARES model.

7.1 Test datasets description

To fully understand analysis of the results, it is imperative to investigate the differences between

both datasets – ARES and RNAQuANet, as evaluation using different test sets severely influences

the model’s performance. When comparing two datasets, each representing a different set of sam-

ples, employing visual approach often is needed to see the underlying differences in the compared

data.

Histograms provide a visual representation of the distribution of certain inherent properties of

data – the ones which are of interest to us are the RMSD values. RMSD histograms essentially

display the distribution of the RMSD values across the entire datasets, allowing us to identify

trends, patterns, detect outliers, and compare datasets using side-by-side visual comparison.

Spearman distance and Spearman footrule distance [39] enable evaluating the rankings of the

RMSD scores computed for a set of randomly selected 3D RNA structures. Given a set of N

observed values, Y = {y1, . . . , yN}, a corresponding set of N predictions, Ŷ = {ŷ1, . . . , ŷN}, the
Spearman distance dS and Spearman footrule distance dSF are given by the following formulas:

dS(y, ŷ) =

N∑
i=1

(yi − ŷi)
2

dSF (y, ŷ) =

N∑
i=1

|yi − ŷi|

The structure rankings are computed within the context of the corresponding reference struc-

tures.

45



7.2. Performance of the developed architecture 46

In this section, we provide the RMSD histograms for test datasets both for RNAQuANet

(Figure 7.1) and ARES (Figure 7.2).

0 5 10 15 20 25 30 35 40 45 50 55 60
RMSD

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

Figure 7.1: Histogram of the RMSD scores computed for 3D RNA structures within their corresponding references
included in the test subset of RNAQuANet training dataset.

0 5 10 15 20 25 30 35 40 45 50 55 60
RMSD

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

Figure 7.2: Histogram of the RMSD scores computed for 3D RNA structures within their corresponding references
included in the test subset of ARES training dataset.

7.2 Performance of the developed architecture

In our work, we successfully trained five GNN-based models using four distinct datasets: (1) ARES

dataset, containing ARES training, validation, and test sets, (2) seg1, which involves descriptors

containing one segment, (3) seg2, which contains two-segment descriptors and (4) seg3, containing

descriptors that have three or more segments. The models in question are as follows:

1. trained on seg1 dataset,



7.2. Performance of the developed architecture 47

2. trained on seg2 dataset,

3. trained on seg3 dataset,

4. trained on ARES dataset,

5. transfer learning on seg2 and the ARES datasets.

Each model involving descriptors (seg1, seg2, and seg3) has been then tested using the dataset

in question and the tested on ARES test dataset. In the case of model trained using the ARES’s

training set, we decided to test it using both the ARES’s test set and the RNAQuANet structure

test set.

Choosing appropriate and effective quality metrics is crucial in comparative analysis. The se-

lection of metrics directly influences the understanding of a model’s performance and its suitability.

In our analysis, we chose three such metrics:

• Mean Squared Error (MSE),

• Mean Absolute Error (MAE),

• the absolute difference between reference and predicted the RMSD values.

Of these, the MSE penalizes larger errors influenced by outliers, while the MAE provides a

more balanced assessment by considering the average magnitude of errors. The absolute difference

between reference and predicted values is an intuitive metric that directly indicates how far off the

predictions are from the ground truth.

The results are summarized in Table 7.1.

Table legend:

1s one segment descriptor dataset,

2s two segments descriptor dataset,

3s three and more segments descriptor dataset.

Trained using Tested on MAE MSE
ARES ARES 2.698 13.367
ARES RNAQuANet 8.597 127.186
RNAQuANet 1s ARES 2.941 17.156
RNAQuANet 1s RNAQuANet 8.556 135.480
RNAQuANet 2s ARES 10.708 130.714
RNAQuANet 2s RNAQuANet 7.371 102.806
RNAQuANet 3s ARES 10.931 136.487
RNAQuANet 3s RNAQuANet 5.630 56.924
Transfer learning RNAQuANet 2s then ARES ARES 2.779 12.447
Transfer learning RNAQuANet 2s then ARES RNAQuANet 9.586 131.802

Table 7.1: Assessment of RNAQuANet’s architectures on various test datasets.

7.2.1 Based on the representative 3D RNA descriptors dataset

The histograms below show the distributions of absolute differences between the ground-truth

RMSD and the RMSD predicted by the five models trained on the RNAQuANet architecture.

The more small differences, the better the model. The graphs show that the models usually



7.2. Performance of the developed architecture 48

perform better on the ARES test set. In the following sections, we will present analogous plots for

models trained on the ARES architecture.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

100

200

300

400
Fr

eq
ue

nc
y

Figure 7.3: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg1 training set and tested on RNAQuANet test set.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Figure 7.4: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg1 training set and tested on ARES test set.



7.2. Performance of the developed architecture 49

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

100

200

300

400

500

Fr
eq

ue
nc

y

Figure 7.5: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg2 training set and tested on RNAQuANet test set.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Figure 7.6: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg2 training set and tested on ARES test set.



7.2. Performance of the developed architecture 50

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Figure 7.7: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg3 training set and tested on RNAQuANet test set.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

100

200

300

400

500

Fr
eq

ue
nc

y

Figure 7.8: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on seg3 training set and tested on ARES test set.



7.2. Performance of the developed architecture 51

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

50

100

150

200

250

Fr
eq

ue
nc

y

Figure 7.9: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on ARES training set and tested on RNAQuANet test set.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Figure 7.10: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on ARES training set and tested on ARES test set.



7.3. Performance of ARES’s architecture 52

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

50

100

150

200

Fr
eq

ue
nc

y

Figure 7.11: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on both training sets of RNAQuANet seg2 and ARES one
and tested on the RNAQuANet test dataset.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Figure 7.12: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the RNAQuANet model trained on both training sets of RNAQuANet seg2 and ARES one
and tested on ARES test dataset.

7.3 Performance of ARES’s architecture

For completeness of our analysis, we also decided to assess performance of the ARES’s architecture.

We trained the model using the ARES’s architecture and RNAQuANet structure dataset and

tested it using both RNAQuANet structure test set and ARES test set. The results are provided

in Table 7.2. Relevant plots are included in Figure 7.13 and 7.14.



7.3. Performance of ARES’s architecture 53

Tested on MAE MSE
RNAQuANet structure 5.02 49.73
ARES 2.76 13.49

Table 7.2: Assessment of the ARES’s architecture – trained on RNAQuANet structure datasets.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000
Fr

eq
ue

nc
y

Figure 7.13: Histogram of a number of occurences of absolute difference values computed between predicted
and ground-truth values for the ARES model trained and tested on the RNAQuANet training and test dataset,
respectively.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

100

200

300

400

500

Fr
eq

ue
nc

y

Figure 7.14: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the ARES model trained and tested on the ARES training and test dataset, respectively.

7.3.1 Transfer learning

The application of transfer learning required training ARES’s architecture using RNAQuANet

structure dataset. After that it was capable to freeze the weights and biases of the trained model to

prevent modifications during subsequent training. Finally, the last decoder layers were substituted

with new ones and became the subject of the learning process on the ARES dataset.



7.3. Performance of ARES’s architecture 54

The results of this approach are provided in Table 7.3.

Tested on MAE MSE
RNAQuANet structure 6.786 89.484
ARES 2.449 11.543

Table 7.3: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the ARES model trained and tested on both training sets of RNAQuANet structure and
the ARES one and the RNAQuANet structure test dataset, respectively.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Figure 7.15: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the original ARES model tested on the RNAQuANet structure test dataset.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Figure 7.16: Histogram of a number of occurences of absolute difference values computed between predicted and
ground-truth values for the original ARES model tested on the ARES test dataset.



7.4. ARES model characteristics 55

7.4 ARES model characteristics

Additionally, we decided to test the ARES model which is openly published. We assessed trained

ARES model using the RNAQuANet structure dataset and ARES dataset. The results are provided

in Table 7.4.

Tested on MAE MSE
RNAQuANet structure 7.897 105.54
ARES 3.099 11.39

Table 7.4: ARES trained model assessment.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Figure 7.17: Histogram of difference frequency between model prediction and reference value.

0 5 10 15 20 25 30 35 40 45 50
RMSD absolute differences

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

Figure 7.18: Histogram of difference frequency between model prediction and reference value.



7.5. Summary of the developed models comparative analysis 56

7.5 Summary of the developed models comparative analysis

Table legend:

• 1s one segment descriptors (cardinality: 22267),

• 2s two segments descriptors (cardinality: 60214),

• 3s three and more segments descriptors (cardinality: 57921),

• ARES 1s one segment descriptors (cardinality: 100),

• ARES 3s two segments descriptors (cardinality: 100)

• ARES 3s three segments descriptors (cardinality: 75)

• TL-R2s-A Transfer learning on the RNAQuANet 2s then the ARES (cardinality: 60214 +
14000)

RNAQuANet ARES
Trained using Tested on MAE MSE MAE MSE
ARES ARES 2.698 13.367 3.099 11.39
ARES RNAQuANet 8.597 127.186 7.897 105.54
ARES ARES 1s 2.977 13.597 5.390 33.157
ARES ARES 2s 2.115 7.399 3.081 12.500
ARES ARES 3s 2.295 7.626 2.115 6.128

RNAQuANet 1s ARES 2.941 17.156 3.764 21.691
RNAQuANet 1s RNAQuANet 1s 2.638 11.023 1.535 4.402
RNAQuANet 1s ARES 1s 1.471 3.274 1.387 3.229

RNAQuANet 2s ARES 10.708 130.714 3.846 26.530
RNAQuANet 2s RNAQuANet 2s 3.233 18.283 2.346 11.641
RNAQuANet 2s ARES 2s 10.269 197.740 2.205 7.227

RNAQuANet 3s ARES 10.931 136.487 3.342 17.053
RNAQuANet 3s RNAQuANet 3s 4.622 32.948 3.449 20.251
RNAQuANet 3s ARES 3s 11.436 137.037 2.497 8.577

TL-R2s-A ARES 2.779 12.447 2.655 13.971
TL-R2s-A RNAQuANet 2s 6.733 62.830 4.014 22.764
TL-R2s-A ARES 2s 7.078 65.742 2.413 8.914

Table 7.5: Assessment of RNAQuANet’s vs the ARES architecture.

7.5.1 Ranking analysis

Spearman distance is a square of Euclidean distance between two rank vectors. The indicator helps

with comparing two rankings to assess their diversity. In this example it is crucial to compare

structure RMSD variation rankings between prediction and the ground-truth values. The smaller

the value of the distance, the better.

In the Table 7.6 Spearman distance is introduced as SD and Spearman footrule distance as

SFD.



7.5. Summary of the developed models comparative analysis 57

RNAQuANet ARES
Trained using Tested on SD SFD SD SFD
ARES ARES 593,929,966 1,247,416 420,678,896 1,015,956
ARES RNAQuANet 336,030 24,220 266,736 20,686
ARES ARES 1s 21,452 1,204 19,912 1,110
ARES ARES 2s 26,352 1,160 10,876 734
ARES ARES 3s 71,928 1,994 25,310 1,080

RNAQuANet 1s ARES 671,629,574 1,344,180 516,132,996 1,144,382
RNAQuANet 1s RNAQuANet 1s 443,386,124 2,153,034 240,493,076 1,505,108
RNAQuANet 1s ARES 1s 21,452 1,204 12,756 882

RNAQuANet 2s ARES 680,090,860 1,354,252 600,927,488 1,253,002
RNAQuANet 2s RNAQuANet 2s 3,678,229,056 10,073,928 2,211,747,526 7,689,058
RNAQuANet 2s ARES 2s 26,352 1,160 11,578 718

RNAQuANet 3s ARES 684,167,340 1,353,968 513,413,986 1,142,826
RNAQuANet 3s RNAQuANet 3s 6,638,067,492 13,992,846 5,580,207,514 12,514,294
RNAQuANet 3s ARES 3s 71,928 1,994 31,452 1,142

TL-R2s-A ARES 628,035,434 1,295,390 485,235,210 1,107,834
TL-R2s-A RNAQuANet 2s 8,978,950,978 17,451,434 3,161,807,430 9,325,692
TL-R2s-A ARES 2s 45,958 1,624 12,756 834

Table 7.6: Assessment of RNAQuANet’s and ARES’ architecture.

The model provided by the ARES performs better when tested on the ARES test set, but

its accuracy is only moderately satisfactory when tested on the RNAQuANet structure dataset.

Although transfer learning approach applied to ARES’s architecture slightly improves performance

on the RNAQuANet test dataset, there are no substantial improvements observed using the ARES

test set.

Taking into consideration both training sets, ARES demonstrates better learning capabilities,

yielding highly relevant results. Based on conducted experiments, we confirmed that nucleotides-

based graph representation of 3D RNA structure is too sparse to fully describe interatomic inter-

actions. Future works must be focused on deeper exploration of interatomic representations od 3D

RNA structures.



Chapter 8

Technological solutions applied

8.1 Business logic layer

The whole business logic layer of our project is developed using Python and consists of two major

components: application, which implements the data processing logic and API, which covers data

access and communication.

8.1.1 Architecture of the application

The application is comprised of Python command line interface .py scripts. The scripts use

Python’s argparse library [40], which allows to pass command line arguments and provides help

messages, describing each config parameter provided. In addition, we use Docker [41] to ensure

portability and ease of installation.

Furthermore, throughout the whole application numerous options are provided using config

files in the YAML format. Among them, there are, e.g., name of the dataset used, path to

directory storing the input dataset, parameters for feature extraction, and neural network layers

configuration.

The neural network is implemented using PyTorch Geometric library [24]. Processed input

data is stored using HDF5 (Hierarchical Data Format) files [30].

8.1.2 Containerization of the application

To enhance the portability and ease of use for our graph neural network models and learning scripts,

we included Docker as part of our project. Our containerization approach focused on encapsulating

the essential components, libraries, and dependencies required for running the models and training

processes.

We created a Docker image that includes the necessary Python dependencies, PyTorch [35],

PyTorch Geometric and other libraries essential for running our framework. This streamlined

approach ensures that users can easily replicate our environment without dealing with complicated

setup procedures, finding and installation of older, archival versions of libraries, etc. We consider

this very important to broadening the openness of science, allowing other researchers to verify,

collaborate, and build upon our framework.

This represents an innovative approach in the realm of scientific research, especially in the

field of machine learning. Most of the work involving neural networks does not come with tools

ensuring ease of reproduction and consistency of environment. This property is especially crucial,

as most machine learning libraries, such as PyTorch, often introduce breaking changes that do

58



8.2. User interface layer 59

Figure 8.1: Swagger [47] documentation showing an endpoint for submitting a new task.

not work on older, legacy code. Using a standardized image providing a snapshot of the work

environment, further allows to seamlessly deploy the application in different context, such as cloud,

local machines, or any system supporting Docker, without the need for extensive configuration or

modification.

8.1.3 Application programming interface (API)

Our API is built using Python Flask [42], a lightweight and versatile web framework that allows

us to develop robust and scalable web applications. With Flask, we have integrated several key

libraries to enhance functionality, documentation, and interaction with the API:

• SQLAlchemy [43] – core SQL toolkit and ORM (Object Relational Mapping),

• Redis Queue [44] – lightweight job queue that supports an efficient and scalable processing
of in-background tasks,

• Werkzeug [45] – utility library giving access to variety of useful functionalities, such as
FileStorage, which makes working with files easier, bringing more types to Python and cre-

ating safe file names,

• Flasgger [46] – automatic creation of an interactive API documentation and request testing.
Examples of API endpoints can be seen in Figures 8.1 and 8.2.

For the database engine, we chose SQLite [48], which is more than enough for our simple

needs of keeping users’ task data and files in an easily accessible and editable storage. An entity–

relationship diagram scheme of the database can be seen in Figure 8.3.

8.2 User interface layer

Our frontend is built using a modern stack of libraries and tools to ensure smooth, user-friendly,

and responsive user interface. It is built on React [49] with Vite [50] as its development server



8.3. Computational infrastructure 60

Figure 8.2: Swagger Documentation showing an endpoint that checks the current processing status for a given
task.

1

n

task

* id integer

* status string[16]

file

* id integer

* name string[256]

* status string[16]

* selectedModel string[16]

* selectedChain string[16]

rmsd float

* task_id integer

Figure 8.3: Entity–relationship diagram of the database.

and TypeScript [51] to add support for static typing to the codebase. Material UI [52] is our main

supplier of components, icons, hooks, and other styling tools. More about the frontend, including

example images, can be seen in Section 9.1.

8.3 Computational infrastructure

The virtual machine utilized for the preprocessing, training, and development of the machine

learning models played a significant role in achieving results in as fast as possible time by providing

the necessary computational power. The most important components of the VM we used are:

• Processor. The server was equipped with a high-performance Intel Haswell architecture
processor, with 32 cores, allowing for parallelized computation during various stages of our

models’ development.

• Caches. The server’s caching system was designed to enhance computational efficiency
by minimizing data retrieval times. It featured multiple levels of cache, with capacities



8.3. Computational infrastructure 61

distributed across the various cache types, such as:

– L1 Data Cache: 1 MiB (32 instances),

– L1 Instruction Cache: 1 MiB (32 instances),

– L2 Cache: 128 MiB (32 instances),

– L3 Cache: 512 MiB (32 instances).

• Memory. To handle large datasets and complex machine learning algorithms, the server
was equipped with a substantial amount of Random Access Memory (RAM). The memory

configuration includes a total of 96 GB, distributed across six modules of 16 GB each.



Chapter 9

User interface

9.1 Web application presentation

Apart from our main goal of creating a quality assessment model for 3D RNA structures, we also

developed a web interface operated on the main application through the API. The website allows

anyone to quickly upload their own files containing 3D RNA structures and start the processing on

our server. The main focus while designing the application was to ensure user-friendly interface,

which we achieved by splitting it into multiple smaller components. An example can be seen in

Figure 9.1, which displays the main page of the website.

We allow users to choose the files to evaluate using two different methods, which can be used

separately or both at once:

• by their PDB ID (Figure 9.2) – we included a preselected list of valid structure identifiers
as well as a search bar that allows users to process structures directly from Protein Data

Bank [53]. The entered ID is first validated by its length. If successful, a request is made to

RNAsolo [20] to verify whether it is a valid 3D RNA structure,

• by uploading files from local drive (Figure 9.3) – uploaded files undergo extension verification
before being sent to the backend for a quick check for easily noticeable errors.

The interface supports upload of multiple structures at a time, which then join a queue and

wait until there are enough free resources on the server. After the task is dequeued, the processing

starts. Each structure is evaluated by our model and the results represented by predicted RMSD

values are saved in the database. On the initial request, user is also given a unique task identifier,

which is used to create a corresponding URL link that allows one to access results of the submitted

task. The task id can also be remembered and introduced by the user to a dedicated field shown

in Figure 9.4. The results page consists of two stages. During the resource processing phase, the

current status is displayed: step-by-step breakdown of already completed operations and future

ones. An example can be seen in Figure 9.5. The last step is the showcase of generated results.

Once the whole process of evaluation of uploaded 3D RNA structures is completed, users can

employ the previously generated task id to access the results. In case of any errors that occurred

during the whole process, such as improper file content, invalid structure of uploaded data, an

internal server error, or any other problem, a descriptive message will be displayed. An example

of the results page can be seen in Figure 9.6.

All the submitted data and the task results are removed after a week from the task completion

time to save server’s resources.

62



9.1. Web application presentation 63

Figure 9.1: Main page of the developed RNAQuANet web application.

Figure 9.2: A predefined examples of 3D RNA structures from Protein Data Bank API and a custom search
PDB ID field.

Figure 9.3: A drag and drop component allowing users to upload 3D RNA structures from local drive.



9.2. Command line interface description 64

Figure 9.4: Component that allows users to search for the results of the task.

Figure 9.5: User preview of the current status of the task in form of steps.

Figure 9.6: Task’s result page.

9.2 Command line interface description

Another method of interacting with the application is the CLI (Command Line Interface). It

enables customization of the processing by providing additional options when executing the scripts.

The CLI also allows for a deeper examination of every part of the processing, observing file inputs

and outputs, as well as running the process on a local machine. There are six standalone scripts

available:

• download preprocessed data – download already preprocessed, i.e. HDF5 files containing
PyTorch Geometric Data objects representing specified train, validation, and test sets,

• download raw data – download a raw dataset containing files requiring preprocessing before
being suitable for training,

• preprocess data – preprocess a given dataset into a format suitable for training, as described
in Chapter 3,



9.2. Command line interface description 65

• train network – initiate training on a provided dataset that has already been preprocessed.
As a result, a trained and complete model is returned,

• eval network – evaluates a specified model, providing relevant statistics, i.e. average mean
squared error over RMSD scores,

• get rmsd – utilizes the trained model to compute the RMSD score for a given 3D RNA
structure stored in the PDB [54] file.

All of the scripts mentioned above are configurable through the use of optional flags, as well

as a configuration file. An example of the configuration file can be seen in Listing 9.1. In the

file, we configure many parameters, such as a URL where the dataset should be downloaded from,

names and paths to files created during the processing, additional options used during the feature

extraction, GAT (Graph Attention Network) dropout rate, batch size, number of workers, and

many more.



9.2. Command line interface description 66

name: 'rnaquadataset ' # dataset name
tools_path: '/app/tools' # path to directory containing external tools used in the

pipeline

verbose: True

data:

path: '/app/data' # path to directory where data should be saved
download:

url: 'https ://www.dropbox.com/scl/fi/ajnl5fhsdj2hjjvtnutyj/rnaquadataset.tar.gz
?rlkey=7 uxlfhr2gigdxavwbgkg86o1x&dl=1' # URL to download the dataset from

archive_ext: 'tar.gz' # archive type (tar / tar.gz)
train_folder: 'train ' # archive path to directory with a train dataset
val_folder: 'val' # archive path to directory with a validation dataset
test_folder: 'test' # archive path to directory with a test dataset
train_csv: 'train.csv' # path to a CSV file containing RMSD values for each RNA

structure from the train dataset

val_csv: 'val.csv' # path to a CSV file containing RMSD values for each RNA
structure from the validation dataset

test_csv: 'test.csv' # path to a CSV file containing RMSD values for each RNA
structure from the test dataset

csv_delimiter: ',' # separator used in CSV files (usually a comma)
csv_rmsd_column_name: 'rmsd' # name of a column containing RMSD values inside

the CSV file

csv_structure_column_name: 'description ' # name of a column containing a names
of files referencing the RMSD inside the CSV file

download_preprocessed:

train_url: '' # URL to download a H5 file containing train dataset
val_url: '' # URL to download a H5 file containing validation dataset
test_url: '' # URL to download a H5 file containing test dataset

features:

atom_for_distance_calculations: "C1'"
max_euclidean_distance: '16.0'
regenerate_features_when_exists: True # if True: if feature extraction file

already exists , remove it and create it again

network:

model_output_path: '/app/models ' # path to save the trained model
hidden_dim: 128

layer_type: 3

num_of_heads: 1

num_of_layers: 4

num_of_node_features: 96

batch_norm: False

gat_dropout: 0.5

lr: 0.001

weight_decay: 0.3

scheduler_step_size: 10

scheduler_gamma: 0.5

batch_size: 1000

num_workers: 1

shuffle_train: True

shuffle_val: False

shuffle_test: False

max_epochs: 50

Listing 9.1: An example of a configuration file.



Chapter 10

Summary

Our work successfully achieved all aims and objectives set in advancing the field of structural

bioinformatics. The primary goal was to explore the application of graph neural networks for

assessing the quality of three-dimensional RNA structures. Moreover, we prepared a representative,

non-redundant and diverse training set of 3D RNA structures and developed the pipeline for its

easy and efficient extending when new RNA molecules occur. Lack of high-quality training sets

is currently a critical obstacle in applying machine learning techniques for 3D RNA structure

analysis and modeling. All outlined objectives have been met and the proposed framework has

demonstrated its potential for the task at hand.

All of our work has been done using Python scripts and command line environment, due to

portability and resource efficiency. We focused on assembling a very diverse set of tools and data,

designing top-rank GRN architectures and training our models to our best ability. As our work

focused on quality assessment of three-dimensional RNA structures, we wanted to provide an easy

way to evaluate a given 3D RNA structure using developed models. Considering that, we decided

to implement an user-friendly web interface that allows the user to do just that.

10.1 Repository

To facilitate further research and collaboration, all scripts, datasets, and related resources de-

veloped during the thesis have been published in an open repository on GitHub. Using Docker

containers, we ensured replicability of our experiments, allowing researchers to build upon the

established framework.

• Project repository: https://github.com/maciejbilinski/rnaquanet

• ARES image: https://hub.docker.com/r/adamczykb/ares_qa

10.2 Future works

Possible extensions to our framework include:

1. Developing more sophisticated architectures that can capture even finer details of the intri-

cate connectivity patterns within three-dimensional RNA structures.

2. Enhancing feature extraction to focus more on atoms instead of nucleotides.

3. Integration of experimental data to enhance accuracy of quality assessments.

67

https://github.com/maciejbilinski/rnaquanet
https://hub.docker.com/r/adamczykb/ares_qa


10.2. Future works 68

4. Further development of user-friendly tools and interfaces, including integration of visualiza-

tion tools, to help researchers interpret and validate the results more effectively.

5. Exploring potential biases in the datasets used for training and evaluations, as well as meth-

ods useful in mitigating biases and ensuring fair predictions.



Bibliography

[1] Mariusz Popenda, Marta Szachniuk, Maciej Antczak, Katarzyna J. Purzycka, Piotr Lukasiak,

Natalia Bartol, Jacek Blazewicz, and Ryszard W. Adamiak. Automated 3D structure composition

for large RNAs. Nucleic Acids Research, 40(14):e112–e112, April 2012.

[2] Maciej Antczak, Mariusz Popenda, Tomasz Zok, Joanna Sarzynska, Tomasz Ratajczak, Katarzyna

Tomczyk, Ryszard Walenty Adamiak, and Marta Szachniuk. New functionality of RNAComposer:

application to shape the axis of miR160 precursor structure. Acta Biochimica Polonica, 63(4),

March 2017.

[3] Joanna Sarzynska, Mariusz Popenda, Maciej Antczak, and Marta Szachniuk. RNA tertiary

structure prediction using RNAComposer in CASP15. Proteins: Structure, Function, and

Bioinformatics, 91(12):1790–1799, August 2023.

[4] Zhichao Miao, Ryszard W. Adamiak, Maciej Antczak, Robert T. Batey, Alexander J. Becka, Marcin

Biesiada, Michał J. Boniecki, Janusz M. Bujnicki, Shi-Jie Chen, Clarence Yu Cheng, Fang-Chieh

Chou, Adrian R. Ferré-D’Amaré, Rhiju Das, Wayne K. Dawson, Feng Ding, Nikolay V. Dokholyan,

Stanisław Dunin-Horkawicz, Caleb Geniesse, Kalli Kappel, Wipapat Kladwang, Andrey Krokhotin,

Grzegorz E. Łach, François Major, Thomas H. Mann, Marcin Magnus, Katarzyna

Pachulska-Wieczorek, Dinshaw J. Patel, Joseph A. Piccirilli, Mariusz Popenda, Katarzyna J.

Purzycka, Aiming Ren, Greggory M. Rice, John Santalucia, Joanna Sarzynska, Marta Szachniuk,

Arpit Tandon, Jeremiah J. Trausch, Siqi Tian, Jian Wang, Kevin M. Weeks, Benfeard Williams,

Yi Xiao, Xiaojun Xu, Dong Zhang, Tomasz Zok, and Eric Westhof. RNA-Puzzles Round III: 3D

RNA structure prediction of five riboswitches and one ribozyme. RNA, 23(5):655–672, January 2017.

[5] Zhichao Miao, Ryszard W. Adamiak, Maciej Antczak, Michał J. Boniecki, Janusz Bujnicki, Shi-Jie

Chen, Clarence Yu Cheng, Yi Cheng, Fang-Chieh Chou, Rhiju Das, Nikolay V. Dokholyan, Feng

Ding, Caleb Geniesse, Yangwei Jiang, Astha Joshi, Andrey Krokhotin, Marcin Magnus, Olivier

Mailhot, Francois Major, Thomas H. Mann, Paweł Piątkowski, Radoslaw Pluta, Mariusz Popenda,

Joanna Sarzynska, Lizhen Sun, Marta Szachniuk, Siqi Tian, Jian Wang, Jun Wang, Andrew M.

Watkins, Jakub Wiedemann, Yi Xiao, Xiaojun Xu, Joseph D. Yesselman, Dong Zhang, Yi Zhang,

Zhenzhen Zhang, Chenhan Zhao, Peinan Zhao, Yuanzhe Zhou, Tomasz Zok, Adriana Żyła, Aiming

Ren, Robert T. Batey, Barbara L. Golden, Lin Huang, David M. Lilley, Yijin Liu, Dinshaw J. Patel,

and Eric Westhof. RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two

aptamers. RNA, 26(8):982–995, May 2020.

[6] Andriy Kryshtafovych, Maciej Antczak, Marta Szachniuk, Tomasz Zok, Rachael C. Kretsch, Ramya

Rangan, Phillip Pham, Rhiju Das, Xavier Robin, Gabriel Studer, Janani Durairaj, Jerome

Eberhardt, Aaron Sweeney, Maya Topf, Torsten Schwede, Krzysztof Fidelis, and John Moult. New

prediction categories in CASP15. Proteins: Structure, Function, and Bioinformatics,

91(12):1550–1557, June 2023.

[7] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica

Section A, 32(5):922–923, September 1976.

[8] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko, Alex Bridgland, Clemens

69



70

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes,

Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen

Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian

Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli,

and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature,

596(7873):583–589, July 2021.

[9] Joana Pereira, Adam J. Simpkin, Marcus D. Hartmann, Daniel J. Rigden, Ronan M. Keegan, and

Andrei N. Lupas. High-accuracy protein structure prediction in CASP14. Proteins: Structure,

Function, and Bioinformatics, 89(12):1687–1699, July 2021.

[10] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks. Computing

Research Repository (arXiv), November 2015.

[11] Jun Li, Wei Zhu, Jun Wang, Wenfei Li, Sheng Gong, Jian Zhang, and Wei Wang. RNA3DCNN:

Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural

networks. PLOS Computational Biology, 14(11):e1006514, November 2018.

[12] Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gautam Srivastava, Praveen

Kumar Reddy Maddikunta, Deepti Raj G, Rutvij H Jhaveri, Prabadevi B, Weizheng Wang,

Athanasios V. Vasilakos, and Thippa Reddy Gadekallu. Generative Pre-trained Transformer: A

Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and

Future Directions. arXiv, May 2023.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv, June 2014.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv,

December 2013.

[15] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional

Networks. arXiv, September 2016.

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua

Bengio. Graph Attention Networks. arXiv, October 2017.

[17] Raphael J. L. Townshend, Stephan Eismann, Andrew M. Watkins, Ramya Rangan, Maria Karelina,

Rhiju Das, and Ron O. Dror. Geometric deep learning of RNA structure. Science,

373(6558):1047–1051, August 2021.

[18] David Sehnal, Alexander Rose, Jaroslav Koca, Stephen Burley, and Sameer Velankar. Mol*:

Towards a Common Library and Tools for Web Molecular Graphics, 2018.

[19] H. M. Berman. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242, January 2000.

[20] Bartosz Adamczyk, Maciej Antczak, and Marta Szachniuk. RNAsolo: a repository of cleaned

PDB-derived RNA 3D structures. Bioinformatics, 38(14):3668–3670, June 2022.

[21] Neocles B. Leontis and Craig L. Zirbel. Nonredundant 3D Structure Datasets for RNA Knowledge

Extraction and Benchmarking, pages 281–298. Springer Berlin Heidelberg, 2012.

[22] Maciej Antczak, Marta Kasprzak, Piotr Lukasiak, and Jacek Blazewicz. Structural alignment of

protein descriptors – a combinatorial model. BMC Bioinformatics, 17(1), September 2016.

[23] Asmaul Hosna, Ethel Merry, Jigmey Gyalmo, Zulfikar Alom, Zeyar Aung, and Mohammad Abdul

Azim. Transfer learning: a friendly introduction. Journal of Big Data, 9(1), October 2022.

[24] PyTorch Geometric. https://pytorch-geometric.readthedocs.io.

https://pytorch-geometric.readthedocs.io


71

[25] Tomasz Puton, Lukasz P. Kozlowski, Kristian M. Rother, and Janusz M. Bujnicki. CompaRNA: a

server for continuous benchmarking of automated methods for RNA secondary structure prediction.

Nucleic Acids Research, 41(7):4307–4323, February 2013.

[26] Marcin Magnus, Maciej Antczak, Tomasz Zok, Jakub Wiedemann, Piotr Lukasiak, Yang Cao,

Janusz M Bujnicki, Eric Westhof, Marta Szachniuk, and Zhichao Miao. RNA-Puzzles toolkit: a

computational resource of RNA 3D structure benchmark datasets, structure manipulation, and

evaluation tools. Nucleic Acids Research, December 2019.

[27] José Almeida Cruz, Marc-Frédérick Blanchet, Michal Boniecki, Janusz M. Bujnicki, Shi-Jie Chen,

Song Cao, Rhiju Das, Feng Ding, Nikolay V. Dokholyan, Samuel Coulbourn Flores, Lili Huang,

Christopher A. Lavender, Véronique Lisi, François Major, Katarzyna Mikolajczak, Dinshaw J.

Patel, Anna Philips, Tomasz Puton, John Santalucia, Fredrick Sijenyi, Thomas Hermann, Kristian

Rother, Magdalena Rother, Alexander Serganov, Marcin Skorupski, Tomasz Soltysinski, Parin

Sripakdeevong, Irina Tuszynska, Kevin M. Weeks, Christina Waldsich, Michael Wildauer, Neocles B.

Leontis, and Eric Westhof. RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional

structure prediction. RNA, 18(4):610–625, February 2012.

[28] Dunja Mladenić. Feature Selection for Dimensionality Reduction, pages 84–102. Springer Berlin

Heidelberg, 2006.

[29] Maciej Antczak, Tomasz Zok, Maciej Osowiecki, Mariusz Popenda, Ryszard W. Adamiak, and

Marta Szachniuk. RNAfitme: a webserver for modeling nucleobase and nucleoside residue

conformation in fixed-backbone RNA structures. BMC Bioinformatics, 19(1), August 2018.

[30] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An overview of the

HDF5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on

Array Databases, EDBT/ICDT ’11. ACM, March 2011.

[31] myHDF5: Explore & Visualize HDF5 Files. https://myhdf5.hdfgroup.org.

[32] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked Label

Prediction: Unified Message Passing Model for Semi-Supervised Classification. arXiv, September

2020.

[33] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep

learning: A comprehensive survey and benchmark. Neurocomputing, 503:92–108, September 2022.

[34] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by

reducing internal covariate shift. In Proceedings of the 32nd International Conference on

International Conference on Machine Learning – Volume 37, ICML’15, page 448–456. JMLR.org,

2015.

[35] PyTorch. https://pytorch.org.

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, January 2014.

[37] Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding

Pooling in Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems,

pages 1–11, 2022.

[38] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning algorithms:

Theory and practice. Neurocomputing, 415:295–316, November 2020.

[39] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Proceedings of the

19th International Conference on World Wide Web, WWW ’10. ACM, April 2010.

[40] argparse – Python 3.11 documentation. https://docs.python.org/3.11/library/argparse.html.

https://myhdf5.hdfgroup.org
https://pytorch.org
https://docs.python.org/3.11/library/argparse.html


72

[41] Docker. https://www.docker.com.

[42] Flask. https://flask.palletsprojects.com/en/3.0.x.

[43] SQLAlchemy. https://www.sqlalchemy.org.

[44] Redis Queue. https://redis.com/glossary/redis-queue.

[45] Werkzeug. https://werkzeug.palletsprojects.com/en/3.0.x/.

[46] Flasgger. https://github.com/flasgger/flasgger.

[47] Swagger. https://swagger.io.

[48] SQLite. https://www.sqlite.org.

[49] React. https://react.dev.

[50] Vite. https://vitejs.dev.

[51] TypeScript. JavaScript with syntax for types. https://www.typescriptlang.org.

[52] Material UI. https://mui.com/.

[53] Stephen K Burley, Helen M Berman, Charmi Bhikadiya, Chunxiao Bi, Li Chen, Luigi Di Costanzo,

Cole Christie, Jose M Duarte, Shuchismita Dutta, Zukang Feng, Sutapa Ghosh, David S Goodsell,

Rachel Kramer Green, Vladimir Guranovic, Dmytro Guzenko, Brian P Hudson, Yuhe Liang, Robert

Lowe, Ezra Peisach, Irina Periskova, Chris Randle, Alexander Rose, Monica Sekharan, Chenghua

Shao, Yi-Ping Tao, Yana Valasatava, Maria Voigt, John Westbrook, Jasmine Young, Christine

Zardecki, Marina Zhuravleva, Genji Kurisu, Haruki Nakamura, Yumiko Kengaku, Hasumi Cho,

Junko Sato, Ju Yaen Kim, Yasuyo Ikegawa, Atsushi Nakagawa, Reiko Yamashita, Takahiro Kudou,

Gert-Jan Bekker, Hirofumi Suzuki, Takeshi Iwata, Masashi Yokochi, Naohiro Kobayashi, Toshimichi

Fujiwara, Sameer Velankar, Gerard J Kleywegt, Stephen Anyango, David R Armstrong, John M

Berrisford, Matthew J Conroy, Jose M Dana, Mandar Deshpande, Paul Gane, Romana Gáborová,

Deepti Gupta, Aleksandras Gutmanas, Jaroslav Koča, Lora Mak, Saqib Mir, Abhik Mukhopadhyay,

Nurul Nadzirin, Sreenath Nair, Ardan Patwardhan, Typhaine Paysan-Lafosse, Lukas Pravda,

Osman Salih, David Sehnal, Mihaly Varadi, Radka Vařeková, John L Markley, Jeffrey C Hoch,

Pedro R Romero, Kumaran Baskaran, Dimitri Maziuk, Eldon L Ulrich, Jonathan R Wedell,

Hongyang Yao, Miron Livny, and Yannis E Ioannidis. Protein Data Bank: the single global archive

for 3D macromolecular structure data. Nucleic Acids Research, 47(D1):D520–D528, October 2018.

[54] PDB file format.

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction.

https://www.docker.com
https://flask.palletsprojects.com/en/3.0.x
https://www.sqlalchemy.org
https://redis.com/glossary/redis-queue
https://werkzeug.palletsprojects.com/en/3.0.x/
https://github.com/flasgger/flasgger
https://swagger.io
https://www.sqlite.org
https://react.dev
https://vitejs.dev
https://www.typescriptlang.org
https://mui.com/
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction


© 2024 Bartosz Adamczyk, Maciej Biliński, Mikołaj Bartkowiak, Szymon Stanisławski

Poznan University of Technology
Faculty of Computing and Telecommunication
Institute of Computing Science

Typeset using LATEX˙


	1 Introduction
	1.1 Scope of the work
	1.2 Structure of the work
	1.3 Work distribution

	2 Preparation of a diverse training set
	2.1 Generating representative dataset of 3D RNA structures
	2.2 Detailed analysis of the dataset
	2.3 Training dataset splitting
	2.4 Data distribution in subsets
	2.5 3D RNA structure descriptors
	2.5.1 Processing pipeline for extracting descriptors

	2.6 Missing data handling

	3 Selected features to describe 3D RNA structures
	3.1 Node features
	3.2 Edge features
	3.3 Preprocessing pipeline for extracting structural features
	3.4 Final form of the data
	3.5 Assessing the set of features

	4 Graph Neural Network-based model architecture
	4.1 Graph Neural Network Foundations
	4.2 Architecture design and analysis
	4.3 Summary

	5 Learning process description
	5.1 Common stages of the learning process
	5.2 Preliminary approach
	5.3 Training on large dataset
	5.4 Transfer Learning application
	5.5 Optimization of hyperparameters

	6 Evaluation of the developed models
	7 Analysis of the obtained results
	7.1 Test datasets description
	7.2 Performance of the developed architecture
	7.2.1 Based on the representative 3D RNA descriptors dataset

	7.3 Performance of ARES's architecture
	7.3.1 Transfer learning

	7.4 ARES model characteristics
	7.5 Summary of the developed models comparative analysis
	7.5.1 Ranking analysis


	8 Technological solutions applied
	8.1 Business logic layer
	8.1.1 Architecture of the application
	8.1.2 Containerization of the application
	8.1.3 Application programming interface (API)

	8.2 User interface layer
	8.3 Computational infrastructure

	9 User interface
	9.1 Web application presentation
	9.2 Command line interface description

	10 Summary
	10.1 Repository
	10.2 Future works

	Bibliography

